cisco

Scalable DDoS mitigation using BGP Flowspec

Wei Yin TAY
Consulting Systems Engineer
Cisco Systems

Agenda

- Goals of DDoS Mitigation
- Problem description
- Traditional DDoS Mitigation
- Scalable DDoS Mitigation

Goals of Scalable DDoS Mitigation

- Stop the attack
- Drop only the DDoS traffic
- Application aware filtering/redirect/ mirroring
- Dynamic and adaptive technology
- Simple to configure
- Easy to disseminate

DDoD Scenario

DDoD Mitigation Solutions

© 2010 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

DDoS Overview

- Distributed denial-of-service (DDoS) attacks target network infrastructures or computer services by sending overwhelming number of service requests to the server from many sources.
- Server resources are used up in serving the fake requests resulting in denial or degradation of legitimate service requests to be served
- Addressing DDoS attacks

Detection – Detect incoming fake requests

Mitigation

Diversion – Send traffic to a specialized device that removes the fake packets from the traffic stream while retaining the legitimate packets

Return – Send back the clean traffic to the server

Great, I have my website back online!
 No more DDoS traffic on my network
 But no more traffic at all on my website....

Well, maybe it was not the solution I was looking for....

Solution: Policy Based Routing

 Identification of DDoS traffic: based around a conditions regarding MATCH statements

```
Source/Destination address
```

Protocol

Packet size

Etc...

Actions upon DDoS traffic

Discard

Logging

Rate-Limiting

Redirection

Etc...

Doesn't this sound as a great solution?

Solution: Policy Based Routing

Good solution for

Done with hardware acceleration for carrier grade routers

Can provide chirurgical precision of match statements and actions to impose

But...

Customer need to call my provider

Customer need the provider to accept and run this filter on each of their backbone/edge routers

Customer need to call the provider and remove the rule after!

Reality: It won't happen...

Scalable DDoS Mitigation

© 2010 Cisco and/or its affiliates. All rights reserved.

Flowspec as an alternative

Comparison with the other solutions

Makes static PBR a dynamic solution!

Allows to propagate PBR rules

Existing control plane communication channel is used

• How?

By using your existing MP-BGP infrastructure

Dissemination of Flow Specification Rules (RFC5575)

Why using BGP?

```
Simple to extend by adding a new NLRI with MP_REACH_NLRI and MP_UNREACH_NLRI
```

Networkwide loopfree point-to-multipoint path is already setup

Already used for every other kind of technology (IPv4, IPv6, VPN, Multicast, Labels, etc...)

Inter-domain support

Networking engineers and architects understand perfectly BGP

Capability to send via a BGP Address Family

Match criteria

Action criteria

Dissemination of Flow Specification Rules (RFC5575)

New NLRI defined (AFI=1, SAFI=133)

- 1. Destination IP Address (1 component)
- 2. Source IP Address (1 component)
- 3. IP Protocol (+1 component)
- 4. Port (+1 component)
- 5. Destination port (+1 component)
- 6. Source Port (+1 component)

- 7. ICMP Type
- 8. ICMP Code
- 9. TCP Flags
- 10. Packet length
- 11. DSCP
- 12. Fragment

The MP_REACH_NLRI – RFC 4760

Notice from the RFC: "Flow specification components must follow strict type ordering. A given component type may or may not be present in the specification, but if present, it MUST precede any component of higher numeric type value."

BGP Flowspec Traffic Actions

Flowspec Traffic Actions

```
| Type low(*)
                          Value
```

• RFC5575 Flowspec available actions

Туре	Description	Encoding
0x8006	traffic-rate	2 bytes ASN ; 4 Bytes as float
0x8007	traffic-action	bitmask
0x8008	redirect	6 bytes Route Target
0x8009	traffic-marking	DSCP Value

Cisco Confidential

Real life architecture

In reality this architecture is not deployed

Service Provider DO NOT trust the Customer

It requires new BGP AFI/SAFI combination to be deployed between Customer and Service provider

Both these result in Flowspec not being deployed between Customer and service provider

What is done instead?

SP utilize a central Flowspec speaker(s)

Have it BGP meshed within the Service Provider routers

Only the central Flowspec speaker is allowed to distribute Flowspec rules

Central Flowspec speaker is considered "trusted" by the network

Central Flowspec speaker is managed by the service provider

Some thoughts about traffic redirection

- Traffic-rate, traffic-marking are useful for simple attacks, but....
- Traffic-redirect
 - Lets you redirect traffic in a VRF (by specifying the VPN RT value)
 - Allows to change dynamically the path of a flow without injecting additional BGP routes
- Great too to clean DDoS traffic with a DPI probe

Thank you.

