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ABSTRACT
Peering infrastructures, namely, colocation facilities and Internet
exchange points, are located in every major city, have hundreds
of network members, and support hundreds of thousands of in-
terconnections around the globe. These infrastructures are well
provisioned and managed, but outages have to be expected, e.g.,
due to power failures, human errors, attacks, and natural disasters.
However, little is known about the frequency and impact of outages
at these critical infrastructures with high peering concentration.

In this paper, we develop a novel and lightweight methodology
for detecting peering infrastructure outages. Our methodology re-
lies on the observation that BGP communities, announced with
routing updates, are an excellent and yet unexplored source of
information allowing us to pinpoint outage locations with high
accuracy. We build and operate a system that can locate the epi-
center of infrastructure outages at the level of a building and track
the reaction of networks in near real-time. Our analysis unveils
four times as many outages as compared to those publicly reported
over the past five years. Moreover, we show that such outages have
significant impact on remote networks and peering infrastructures.
Our study provides a unique view of the Internet’s behavior under
stress that often goes unreported.
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1 INTRODUCTION
Today, our economy as well as our social life, rely on the smooth
and uninterrupted operation of the Internet. While the Internet has
shown an amazing resilience as a whole, even short outages can
have a significant impact on a subset of the Internet user population.
Past major Internet outages have been studied in depth, including
outages due to network component failure, e.g., hardware, software,
and configuration failures in routers [98], optical layer outages [47],
natural disasters [20, 23, 35, 56, 84], and nation-wide censorship [23,
24, 83]. Most of these events affected either individual networks or
entire regions. This can be attributed to the fact that the Internet’s
architecture used to be quite hierarchical. Thus, most local outages
were expected to have a local impact.

During recent years the Internet infrastructure has changed sig-
nificantly, a phenomenon that is referred to as the “flattening” of
the Internet’s hierarchy. In this setting, the majority of Internet
inter-domain traffic flows directly between edge networks, bypass-
ing transit providers [62]. For example, eyeball networks reduce
their transit costs and improve end-to-end performance [41, 49]
by directly peering with content providers, content distribution
networks, and cloud providers, which are now amajor source of traf-
fic [32, 46, 82]. Direct peering is enabled by third party peering infras-
tructures (also referred as carrier-neutral peering infrastructures),
such as colocation facilities and Internet Exchange Points (IXPs).
These infrastructures are increasingly deployed in cities around
the globe [50], and their members are growing constantly [61, 68]
supporting hundreds of thousands of peerings [100].

Given the high concentration of peerings established at coloca-
tion facilities and via IXPs, many government bodies consider them
critical infrastructures [30, 39, 64, 96]. Unfortunately, little is known
about outages at these peering infrastructures, i.e., outages due to
interruption, misconfiguration, and failure in the supply of power,
the hardware, or the software that supports the operation of the
peering facility. Such outages are affecting multiple networks, thus
have different characteristics than those due to faulty operation or
failure of an individual router or a single network provider. To the
best of our knowledge, the only detailed study of such an outage is
about the World Trade Center after the September 11 attack [13].
The report concludes that the catastrophic failure had “little effect
on the Internet as a whole” but “a major effect on the services of-
fered by some information and service providers”. However, these
infrastructures have gained an increasingly international set of net-
work members in the last 15 years [16, 18]. Thus, it is quite possible
that a local outage at one of these infrastructures today has a more
global effect.

446

https://doi.org/10.1145/3098822.3098855
https://doi.org/10.1145/3098822.3098855


SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA V. Giotsas et al.

2012/06
2012/12

2013/06
2013/12

2014/06
2014/12

2015/06
2015/12

2016/06
2016/12

0

5

10

15

20

25

In
fra

st
ru

ct
ur

e
ou

ta
ge

s Facilities
IXPs
Reported

Figure 1: Detected and reported infrastructure outages per
semester since 2012. The peak in the 2012/12 bin is due to
Hurricane Sandy.

Unfortunately, a system that can detect and report on peering in-
frastructure outages in an automated fashion is not available. Such a
system would be of increasing interest for many Internet stakehold-
ers. Network operators can be informed, in real-time, about ongoing
outages, which today mainly happens via out-of-band communica-
tion after the event, if at all. Timely detection of outages based on
routing data can help operators optimize their mitigation strategies
and the communication with their customers. Policy makers can
make use of such a system to improve their situational awareness
regarding the threats to critical infrastructures. Finally, researchers
can understand how the evolving Internet behaves under stress. To
enable the above capabilities, we build Kepler , a system that detects
peering infrastructure outages with the aim to understand the ex-
ternalities of such outages, improve current monitoring practices,
and potentially help in improving the resilience of the Internet at
the regional and global level.

By extracting location meta-data encoded in BGP messages, Ke-
pler can detect 159 facilities and IXP outages over the last 5 years,
four times more than publicly reported in popular operators and
outage mailing lists [25, 26, 67, 74]. Figure 1 shows the number
of facility and IXP outages we detect per 6-months since 2012,
compared to the number of facility and IXP outages reported. Sur-
prisingly, even infrastructure outages with large effects are not
necessarily communicated via these mailing lists.1 One alternative
communication channel of outage events is through social media,
where operators often resort to seeking answers on network dis-
ruptions. However, extracting this information remains a manual
and error-prone search process [9].

To develop Kepler we have to tackle the following challenges:
Identify Outages: How to detect outages at peering infrastruc-
tures given that previous work has illustrated that even identify-
ing the AS responsible for major routing events is a challenging
task [42, 94, 99].
Characterize Outages: The next challenge is to assess the start,
duration, impact, and frequency of an outage. Often, public infor-
mation, such as press releases after an outage, are of questionable
accuracy and detail, and there is limited transparency on what
actually happened and which parts of the Internet were affected.
Locate Outages: The third challenge is to detect the exact loca-
tion of an outage. While a map of the U.S. long-haul fiber-optic
1For example, the May 2015 outage at AMS-IX was discussed in the Austrian ATNOG
mailing list [4] but not the more popular NANOG and outages mailing lists.

infrastructure including some of the carrier facilities of major U.S.
ISPs was released last year [34], we lack a detailed map of peering
infrastructures. Two recent works attempt to tackle this problem by
using large-scale active traceroute campaigns to infer the IP-level
connectivity at colocation facilities [50, 72]. However, these meth-
ods scale only for a limited number of ASes or a limited number of
facilities. This is due to the scale of the required active queries and
the resource limitations of the available measurement platforms,
such as RIPE Atlas and Looking Glasses [48, 91].

Our Approach:We introduce a novel methodology to reliably
detect peering infrastructure outages in the wild and investigate
their impact. Our detection mechanism relies on the observation
that BGP is no longer purely an “information hiding protocol” [92].
The BGP Communities attribute, introduced with RFC1997 [17] in
1996, provides meta-information regarding prefixes announced
to customer and peer networks, and is used for traffic engineer-
ing [85], traffic blackholing to mitigate attacks [31], and network
troubleshooting [44]. Their use has become quite popular in recent
years (Section 3.2) allowing us to use them as a crowd-sourcing
mechanism for acquiring accurate location information for about
50% of all BGP IPv4 updates (Section 5.2).

While BGP routing updates have been used to detect outages
limited to the AS and prefix granularities [8, 20, 24, 60], our novel in-
sight is that Communities with location information in BGP updates
can reveal the occurrence and location of peering infrastructure
outages. Our methodology relies on location-based BGP Commu-
nity values and allows us to pinpoint the exact location as well
as the starting time and duration of the outage at high accuracy.
To assess the impact of an outage, we track the changes in the
use of the Communities by the members of the affected facility.
However, since the semantics of the Communitiy attributes vary in
geolocation granularity, from facility or IXP to city or metropoli-
tan area, and Communities are not attached in every BGP update,
monitoring Communities alone is not sufficient. To address these
limitations, we augment our analysis with a physical map of facili-
ties which allows us to correlate location-specific routing changes
with the colocation of ASes in common peering infrastructures (Sec-
tion 3.3). Moreover, we use archived and a small number of targeted
traceroute measurements to confirm our inferences (Section 6.3).

In summary, our contributions are the following:
• A novel lightweight methodology for detecting, localizing, and
tracking outages at peering infrastructures through passive mon-
itoring of BGP data, by combining location-tagging BGP Com-
munities with colocation data in facilities and IXPs.
• We instantiate our methodology in an operational monitoring
system, Kepler , and we use it to study infrastructure outages visi-
ble in public BGP data between 2012 – 2016. We unveil four times
as many outages at major peering infrastructures as compared
to those previously reported in major networking mailing lists
and news websites.
• We augment our analysis with targeted and archived traceroute
measurements, and traffic data to further investigate the impact of
the detected outages. We find that a large number of the affected
links with remote networks can be hundreds or even thousands
of miles away from the location of the incident, challenging the
mental model that local outages have only local impact. Our study
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reveals that interconnection strategies such as remote peering
and the colocation of ASes at multiple diverse locations create
unexpected interdependencies among peering infrastructures
that remain largely unnoticeable during normal operation, but
disrupt connectivity in counter-intuitive ways during outages.
The rest of the paper is organized as follows. Section 2 discusses

the changing interconnection landscape. Section 3 introduces our
methodology and the datasets we compile to make it feasible. Sec-
tion 4 explains how we develop Kepler to implement the proposed
methodology, which we evaluate in Section 5. Finally, Sections 7
and 8 discuss the implications of our work and summarize our
contributions respectively.

2 BACKGROUND
Networks often interconnect through multiple physical links estab-
lished over peering facilities, sometimes even in different locations
in the same city [73, 92]. While in the past the majority of facilities
were maintained by individual transit providers to interconnect
with their customers, the advent of IXPs and the flattening of the In-
ternet hierarchy led to the increasing popularity of carrier-neutral
facilities, such as colocation facilities, which allow connectivity
independent of specific providers [54, 70].

Colocation facilities offer the hosting of servers and network
equipment to facilitate networks’ interconnections, typically via
cross-connects or Private Network Interconnects (PNI), i.e., a point-
to-point circuit [12]. Facilities are mainly concentrated in metro-
politan areas, with major telecommunication hubs like London and
New York hosting dozens of facilities [50]. While it is common prac-
tice among facility operators not to publish the number of PNIs,
there are indications that their number is continuously growing.
Equinix reports more than 188K cross-connects over its 145 facil-
ities (Q3/2016) [37]. Moreover, high-profile acquisitions suggest
a highly dynamic sector, including the acquisition of Telecity by
Equinix for $3.8 Billion [36], and Telx by Digital Reality for $1.9
Billion [97]. Interconnection paradigms such as remote peering and
tethering are increasingly deployed, allowing networks in remote
sites of the same facility to exchange traffic directly [77].

An IXP is a physical infrastructure composed of layer-2 Eth-
ernet switches which interconnect edge routers of members [18].
Once a physical connection is established, ASes can chose between
different flavors of peering: (i) bilateral public peering, (ii) bilat-
eral private peering via a virtual local network, similar to PNIs in
colocation facilities, (iii) multilateral public peering over IXP route
servers [52, 89], or (iv) remote peeringwith the members of affiliated
IXPs [16]. Today, there are more than 300 IXPs in the world [81],
particularly in Europe, but their popularity also increases in other
regions, including the USA [61], Latin America [11], and Africa [40].
The number of members varies from tens to multiple hundreds, e.g.,
DE-CIX Frankfurt and AMS-IX Amsterdam have over 700 mem-
bers [2, 28]. Moreover, IXPs are not just local interconnection points
but they are becoming international hubs, through the use of layer-
2 carriers and Virtual PoPs (vPoPs). For instance, LINX London
interconnects networks from more than 72 countries [65, 66]. It is
also increasingly popular for IXPs to form conglomerates by inter-
connecting with each other [45], while distributed IXPs, such as
NL-IX, interconnect their remote sites to offer virtual backbone and

remote access to their network members. Studies show that IXPs
enable hundreds of thousands of peerings [1], the large majority
being multi-lateral peerings [52, 89]. Traffic exchanged at IXPs has
increased significantly in recent years [18], exceeding 5 Tbps at
large IXPs.

With the advent of Content Distribution Networks (CDNs) and
the placement of data caches close to the users, the interconnection
landscape has become increasingly clustered in large metropolitan
hubs [50, 70]. The geographic agglomeration of the peering activity
has led to an increasingly symbiotic relationship between IXPs and
colocation facilities: IXPs benefit from placing their switches in
locations where ISPs can easily install their network equipment,
while facility operators often subsidize the presence of IXPs in
their space to increase the attractiveness of their colocation ecosys-
tem [12, 78]. These mutual interconnection incentives create tight
physical interdependencies between IXPs and facilities. For exam-
ple, DE-CIX has distributed its peering fabric among 12 different
facilities in the greater Frankfurt metropolitan area [29], while the
Equinix Frankfurt KleyerStrasse (FR5) colocation facility hosts 10
different IXPs [81].

3 METHODOLOGY
In this section, we describe our methodology for detecting and
localizing peering infrastructure outages.

3.1 Challenges and Concept
Recall that the main purpose of BGP is to provide reachability in-
formation and not connectivity information [92]. Thus, relying on
the BGP path or the AS-level topology of the Internet is not suffi-
cient to detect the physical location of a peering, and the location
of the underlay interconnection infrastructure. To illustrate the
challenges in detecting and pinpointing the exact physical location
of a peering outage consider the topology of Figure 2. It consists of
four ASes (ASi ), four colocation facilities (Fj ), and two IXPs (IXk ).
Figure 2(b) and 2(c) are the results of two different outages, at colo-
cation facility F2 and at IXP IX1, respectively. Initially, AS1 reaches
AS2 via private peering over facility F2; AS2 reaches AS4 via public
peering over the IXP IX1; and AS3 reaches AS4 via IX1. Note, some
paths involve multiple facilities, e.g., from AS2 to AS4 via IXP IX1,
F2, and F4, and from AS3 to AS4 via IX1, F3, and F4.

The failure of F2, Figure 2(b), affects both private and public in-
terconnections at this facility. The private ones are affected directly,
the public ones only indirectly since F2 hosts part of IXP IX1’s
switching fabric. In our example, two paths change: AS1 switches
to its backup path via F1, and AS2 switches to its backup path to
AS4 over F4. Note that the AS paths do not change. However, the
involved facilities and IXPs do change. Likewise, the failure of IX1,
(Figure 2(c)), partially affects the paths of F2, F3, and F4, since the
new routes have to bypass IX1. This can cause a large number of
BGP updates. Yet, the AS paths themselves again do not necessarily
change. Both scenarios illustrate the increasing symbiotic relation-
ships between colocation and IXP peering infrastructures. Such
inter-dependencies have already led to confusion when locating
and reporting the cause of outages [3, 87].

Our examples show that it is not sufficient to track AS-level
changes to determine the outage location, we need to monitor
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Figure 2: Examples of how facility-level and IXP-level outages affect the inter-domain paths.

facility-level paths and correlate them acrossmultiple route changes.
In Figure 2(b), the fact that F2 disappears from all paths, while IX1
disappears only from the path through F2, is sufficient to infer that
the outage occurred at F2. Similarly, for Figure 2(c) the outage can
be localized at IX1 and not F1, since the AS1–AS2 path through
the facilities/IXP remains unchanged, while the AS3–AS4 path is
re-routed via IX2 concurrently with a path change fromAS2 toAS4.

The example above allows us to derive the following insights
about infrastructure-level outage detection:
Facility-level Inter-domain Hops: The four ASes appear to ex-
change traffic directly when observing only the AS-level paths.
However, the physical paths involve multiple intermediate facility-
level and IXP-level infrastructures that introduce externalities in
the resilience of the AS interconnections. We need to capture these
infrastructures to accurately localize outages.
Path Correlation: To uncover the failure location within the com-
plex infrastructure of today’s Internet, we have to correlate path
changes across multiple vantage points with colocation data at
facilities and IXPs.
Before and After Comparison: To understand the source and
impact of an outage, one needs to compare routes during an outage
to those before the outage—the “healthy” state. Therefore, we need
the ability to continuously monitor the routing system.

A major challenge is how to get sufficiently fine-grained facility
information. A key insight of our approach is that we can extract
facility information per routing update through the analysis of BGP
communities. Moreover, it is feasible to collect detailed facility maps
from various public sources using techniques described in [50, 68],
thanks to the increasing openness in the sharing of colocation data
to support a more flexible peering setup process or even automate
it altogether [7, 63]. Indeed, today the large majority of peerings
are multilateral peerings that do not involve formal contractual
agreements [100].

3.2 BGP Community Dictionary
BGP Communities have the format X:Y, where X, Y are two 16-bit
values (extended communities use four octets [93]). By convention,
the first two octets encode the ASN of the operator that sets the
community, while the next two octets encode an arbitrary value
that is used by the operator to denote specific information such
as the ingress location of a route. There are two types of commu-
nities: (i) inbound communities that are applied when an operator
receives a prefix advertisement at an ingress peering point, and (ii)
outbound communities that are applied when an operator sends a
prefix advertisement at an egress peering point.

The Rise of BGP Communities: Between 2010 and 2016 the
visible number of networks using BGP Communities has more than
doubled from 2, 500 to 5, 500, and the number of unique community
values has tripled to more than 50K in 2016 (Figure 3). Moreover,
the number of Community values per prefix announcement has
increased from an average of 4 to 16. These communities encode a
wealth of routing meta-data, but unfortunately, the community is
possibly the only BGP attribute with no specific semantics and val-
ues that are neither standardized nor have a uniform encoding [33].
Consequently, extracting meaningful information from the commu-
nities is not possible without additional sources of interpretation.
Location-Encoding Ingress Communities: Each operator uses
different values to encode location information at various granu-
larities. For example, in Figure 4 the BGP collector receives routes
for prefixes 184.84.242.0/24 and 2.21.67.0/24 with a common
AS subpath 13030 20940. The first route is tagged with commu-
nity 13030:51904. The value 13030 in the top 16 bits indicates
that AS13030 has applied the community. The value 51904 in the
bottom 16 bits, indicates that this community is used to tag routes
received at the Coresite LAX-1 facility [59]. Similarly, the second
route is tagged with two communities from AS13030. The value
51702 means that the route’s ingress point was the Telehouse East
London facility, and the value 4006 means that the route was re-
ceived by a public peer at the LINX IXP Juniper LAN.
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Figure 3: Number of unique BGP Communities values (left
y-axis), compared to unique top two octets.

While the community values are not standardized, many oper-
ators publicly document their community schemes either in their
Internet Routing Registry (IRR) records or in their support Web
pages. However, the documentation is in natural text and lacks a
standardized structure and terminology, therefore its parsing neces-
sitates significant manual work that is unsustainable given the large
number of BGP Communities. To tackle this problem we develop a
web-mining tool that enables the automatic compilation of a com-
munity dictionary. We first use a Web Scraper to extract the text
from the remarks sections of IRR records and from ASes’ web pages.
Then, a text parser analyzes the extracted text using the Natural
Language ToolKit [10] to discover infrastructure-related communi-
ties. We identify sub-strings that include community values using
regular expression matching, on which we use Stanford’s Named
Entity Recognizer (NER) [43] to identify named entities, focusing
on entities that pertain to locations or infrastructure operators.
To improve the accuracy of NER for network-related entities, we
adopt the techniques proposed by Banerjee et al. [5] and we search
PeeringDB [81], Euro-IX [38], and IRR records, for organization
names that match capitalized words encountered in communities
documentation. These sources also enable us to determine the net-
work type of the identified entities. For our community dictionary,
we only keep communities that tag three types of Named Entities:
(i) city-level locations, (ii) IXPs, and (iii) colocation facilities.

Then, using syntactic analysis we filter-out outbound commu-
nities that define location-specific traffic engineering actions. In
particular, we perform Part-of-Speech tagging to distinguish verbs
in passive voice used for documenting inbound communities (e.g.,
“received”, “learned”, “exchanged”), and ones in active voice that
define actions (e.g., “announce”, “block”). Finally, we assign a sin-
gle location identifier to all entities related to a common location.
Different operators use different naming, such as city names (“New
York City”), city initials (“NYC”), or IATA airport codes (“JFK”). To
determine if the different location identifiers refer to the same loca-
tion we query the Google Maps Geocoding API [53] to obtain the
coordinates for each identifier, and we group together identifiers
that are within 10 km from each other.
IXP Path Redistribution Communities: We augment our dic-
tionary with path redistribution communities used by IXP route
servers. IXP route servers often use communities to aid their mem-
bers in controlling how their prefixes are advertised to other route
server members [57], e.g., advertise to all, and advertise to selected
peers. Thus, a route server community on a BGP route indicates that

Figure 4: Inferring physical locations from BGP Communi-
ties.

the route traversed the IXP and the first 16 bits of the community
value indicates the IXP ASN.
Dictionary Statistics: As of December 2016, our community dic-
tionary includes 5,284 communities by 468 ASes and 48 route
servers, and covers 288 cities in 72 countries, 172 IXPs, and 103
facilities. While 468 ASes is a small fraction of the ASes, it includes
all but two Tier-1 ASes and most major peering ASes. Note that for
the two Tier-1 ASes (XO Communications and Verizon) missing
from our dictionary we observed less than 20 different community
values in the public BGP data, which indicates that they either do
not use communities to annotate their PoPs, or they do not prop-
agate such communities outside their domain and do not provide
publicly accessible community documentations. Figure 5 shows
the geographical coverage of locations we extract from the com-
munities. The majority of the communities (66%) tag a location
in Europe, followed by North America (24.5%), while only 2% of
the communities cover locations in Africa and South America. Al-
though the interconnection ecosystem in these regions is indeed
relatively underdeveloped [55, 71], the difference in coverage can
be also explained by biases in the underlay documentation sources,
such as the completeness of the different Internet Routing Reg-
istries [6], and the fact that our natural language parser works only
with English text. As we elaborate in Section 5.2, location BGP
Communities included in our dictionary are present in about half
of all BGP IPv4 updates. To ensure freshness we recompute our
dictionary every two weeks and always use the dictionary from
the corresponding time period for route processing. To validate the
correctness of our automatically-generated community dictionary,
we compared it against a manually-constructed dictionary. Due to
the overhead of manually parsing community documentations, we
limited the validation to the 25 ASes in our dictionary with the
highest number of BGP paths annotated. We did neither find a false
positive nor a false negative.
Attrition of BGP Communities: To understand the attrition rate
of location-encoding communities we study the communities clas-
sified either as “geographical location” or as “interconnection point”
by Donnet and Bonaventure in 2008 [33]. Only 552 of the 2,980
communities in their dictionary are visible in the aggregated Route-
Views/RIS BGP data across 2016, while the rest appear not to be
used anymore. On the other hand, of the 5,284 communities in our
dictionary, only 471 (9%) are also in the 2008 dictionary. However,
only 7 (1.5%) of the common community values changed meaning
after almost a decade, indicating that the semantics of communities
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City-level IXP-level Facility-level

Figure 5: The geographic spread of trackable infrastructure.

within an AS change rarely. Since location-encoding communities
are used for operational purposes, such as troubleshooting and
traffic engineering, the stability of community semantics minimizes
the risk of misconfigurations when setting these communities on
prefix advertisements.

The above findings highlight the value of our automated commu-
nity interpretation to enable a frequent extension of the community
dictionary with new values, to remove stale entries, and to maintain
a high-degree of coverage of the active communities. Moreover, the
risk of misinterpreting the community values due to stale entries is
small even in the time span of years.

3.3 Colocation Map
The majority of the communities annotate routes at city-level gran-
ularity, which is too coarse to pinpoint a peering infrastructure
outage at the facility-level or IXP-level. To achieve the intended
detection granularity, we complement the BGP communities with
a high-resolution colocation map that includes three types of inter-
connections: (i) ASes to IXPs, (ii) ASes to facilities, and (iii) IXP to
facilities. For each facility we also record the building-level address,
so that we know which facilities, IXPs and ASes operate at the cities
annotated by our community dictionary. To this end, we mine the
colocation data from PeeringDB [81] and DataCenterMap [27], as
well as individual AS websites. Since names of facilities and facility
operators are not standardized, we use the facility address (postcode
and country) to identify common facilities among the different data
sources. We then merge the tenants listed in each data source for
the same facility to increase the completeness of our colocation
map. Similarly, IXP names also differ between datasets. To identify
and merge the records that refer to the same IXP we use the URLs
of the IXP websites, and the location (city/country) where the IXP
operates. We use the constructed colocation map in the city-level
outage signal arbitration to de-correlate the “fate” of various ASes
in the same city during an incident, based on their presence or
absence at facilities. Thus, we can pinpoint the likely facility-level
or IXP-level location of incidents and increase the coverage of our
outage detection capabilities to physical locations beyond those
explicitly encoded in BGP communities.

3.4 Detection Methodology Overview
To detect and localize peering infrastructure outages we propose
Algorithm 1. Its input is a stream of BGP data, the BGP Community
dictionary, the colocation map, as well as targeted active measure-
ments for incident investigation.

The first step is to parse the BGP Communities attribute of the
collected BGP routes and find paths annotated with the traversed
Points-of-Presence (PoPs). We use these paths to analyze the PoP-
level routing dynamics. When we use the term “PoP” without any
other qualification, we refer to any of city, IXP, or facility. We filter-
out transient paths to ensure that we have a stable baseline of the
routing system, and we update the set of stable paths periodically
to account for path changes after the start of our detection process.

Next, we start monitoring the incoming BGP updates for PoP-
level deviations from the stable baseline. Instead of checking for AS
path changes, we check if the relevant community values change.
When we observe a large enough fraction of paths that deviates
from the baseline PoP within the same time frame, we call it outage
signal. An outage signal corresponds to a spike in localized routing
activity and indicates that a routing incident affected a specific PoP.
Yet, it does not indicate if the incident is due to an outage.

Link-level events such as the de-peering of two large peers, or
AS-level incidents such as the disconnection of an IXP member,
can also lead to such an outage signal. To determine the source of
the signal, we trigger a detailed signal investigation process that
classifies the signal as link-level, AS-level, or PoP-level based on
the number and disjointedness of the affected ASes.

If the signal is classified as a PoP-level outage, the algorithm
proceeds to explore the granularity of the PoP. Here, we combine
the colocation map with active traceroute measurements that we
collect either opportunistically by mining public traceroute reposi-
tories, such as those provided by PathCache [95], or by executing
our own targeted traceroute campaigns. The traceroute paths help
us to validate the outage and eliminate false positives by mapping
the IP-level hops to IXPs and facility interfaces using the techniques
described in [50, 76]. When the data-plane and control-plane infer-
ence identify the same PoP as the source of the outage, we consider
the outage as validated. We determine the length of the outage (i)
by actively probing the involved interfaces and (ii) by monitoring
BGP messages for changes in the communities that indicate that
the paths have returned to the baseline PoP. Since we mainly rely
on passive measurements via BGP, our active monitoring is rather
selective and does not rely on greedily probing all infrastructure
addresses. Therefore, our approach is practical and conforms to the
resource limitations of publicly available measurement platforms,
including RIPE Atlas [90] and Looking Glasses [48].

4 THE KEPLER SYSTEM
In this section, we present the design and implementation of Ke-
pler2, a system that relies on our methodology to detect outages
in the wild and investigate them. While the analysis of BGP data
is lightweight, our experience with operating Kepler shows that
the efficient design of different modules is critical to make the sys-
tem practical and accurate. Figure 6 illustrates the architecture of
Kepler .

4.1 Input Module: Data Preprocessing
The first part of Kepler preprocesses all data sources. First, it gener-
ates the BGP Community dictionary and the colocation map. For
the continuous BGP data we use BGPStream [79] to decouple Kepler
2Data and additional technical details are available at http://kepler.inet.tu-berlin.de
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Algorithm 1: Overview outage detection and investigation
Input: (BGP paths, BGP Community Dictionary, Colocation Map,

Targeted Active Measurements)
Output: Location, Time and Duration of a PoP-level Outage

Pathsmapped ←−Map BGP paths to traversed PoPs based on the
attached Communities meta-data;

Pathsstablemapped ←− Filter-out transient paths;
for BGP updates in new measurement interval do

Pathsdiver tedmapped ←− calculate how many paths diverted from the
PoP in the stable baseline;

if
Pathsdiver tedmapped

Pathsstablemapped
> Tf ail then

Signal investigation
Siдnaltype ←− Infer the type of outage signal based on the
number of affected ASes and AS links;

if Siдnaltype is PoP then

POPBGPtype ←− Determine the type of PoP based on the
colocation map;

POP tracetype ←− Confirm the affected PoP through
traceroute queries;

if POPBGPtype ≡ POP tracetype then
while Outaдestate is True do

duration ←− record the duration of the
outage

return Outaдe(t ime, POP, duration)

from the sources of BGP feeds, and thus, obtain a unified feed of
sorted BGP records. In addition, Kepler sanitizes the collected paths
by discarding paths with AS loops, private ASNs, or special-purpose
ASNs [22]. Currently, we use all RouteView and RIPE RIS collec-
tors. For every BGP update with attached BGP community values,
Kepler uses the dictionary to infer which physical infrastructure
a route traverses. Hereby, Kepler also infers which location-based
BGP community refers to which hop of the BGP path, either by
mapping the first two octets of the community to the same ASN
hop in the path, or by applying the methodology in [51] in the case
of IXP route server communities.

4.2 Monitoring Module: Outage Detection
Kepler’s monitoring module identifies all the PoPs P for which we
have physical location information from the community dictionary.
These are the PoPs that we monitor in detail. Then, Kepler periodi-
cally computes a set of stable routes that involve p for all p ∈ P . A
prefix route is stable if it traverses P for a period of ds consecutive
days (the default value is 2 days). Thereafter, we check for PoP-level
routing changes vs. the baseline stable path. Hereby, we consider
the following change to a route from s to d involving PoP p ∈ P :
(i) an explicit withdrawal, (ii) another AS path not involving PoP p,
and (iii) an announcement with another community—an implicit
withdrawal. In addition, we check for BGP State messages to detect
potential disruptions in the BGP feed that can cause gaps in our
BGP stream and disregard updates due to it. Note, if the AS path
changes but the community tag involving p remains the same, we

do not consider the update a route change for p. However, we con-
sider changes to the community tag as route change even if the AS
path remains unchanged.

We bin routing updates in time intervals to correlate path changes
with routing incidents. Since most of the ASes that set the ingress
Communities are close to one of our BGP collectors it suffices to
use a relatively short time interval. We use a binning interval of
60 seconds (twice the default MRAI time [88]). At the end of each
binning interval we compare the paths from the baseline to the
paths in the current bin and determine the fraction of paths that
continues to traverse p. If this fraction is below a threshold ofTf ail
we may have an outage signal. However, an aggregated comparison
of all the paths can be biased by ASes that account for a dispropor-
tionately large number of paths. For instance, if a partial outage in p
affects the paths of many regional ASes but not the paths of a large
Tier-1 AS, then the total fraction of paths may not fall below the
detection threshold Tf ail causing a false-negative. Therefore, we
group the paths based on the ASes that are involved in the tagged
links and determine outages per AS. If the fraction of paths of an AS
a involving p falls below the thresholdT , we say that a is subject to
an outage signal in the current binning interval. An outage signal is
an indicator of a possible outage event but the definite inference is a
task of the signal investigation module. After each binning interval,
we remove the changed paths from the set of stable paths. We also
refresh the set of stable paths every 2 days to account for new paths
and new community values. Note, the focus of this module is to
detect the start of an outage.

4.3 Outage Signal Investigation
Kepler’s outage signal investigation considers all outages signaled
within a time interval and determines the granularity of the trigger-
ing event. We distinguish four incidents: (i) link-level, (ii) AS-level,
(iii) operator-level, and (iv) PoP-level outages. For PoP-level events
we identify the physical location. Kepler also tracks the new physi-
cal location after the rerouting of a stable path and the time it takes
for a path to return back based on the same principle to estimate the
duration of the outage. To increase the confidence for the duration
of each outage and the reaction of network operators, Kepler relies
on targeted active measurements.

We distinguish four different granularities of outage signals.
Link-level: Changes to an AS-link with a large number of prefixes,
can cause an outage signal, e.g., a de-peering or even a MED change
between two Tier-1 ASes. Since such link-level incidents are not
the focus of this paper we require that more than three different
ASes have to be affected to trigger an investigation.
AS-level: Changes in the availability of a densely connected AS
can cause multiple of its peers to change their paths away from
a specific location concurrently. For instance, if an IXP member
decides to terminate its membership, it will terminate all public
peering BGP sessions at that IXP. If all affected links intersect at a
single common AS, either as near-end or as far-end neighbor, we
classify the signal as AS-level.
Operator-level:We combinemultiple AS-level outages to an operator-
level outage, if all of the affected links include ASes that belong
to the same operator. Our motivation is that operators often ad-
minister multiple sibling ASes each with different functions but
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Figure 6: Flowchart of Kepler’s outage signal detection and investigation.

often hosted on the same infrastructures. For instance, the Equinix
Ashburn Exchange hosts three different sibling ASes operated by
Bell Canada. An organizational-wide policy or network change will
effect all sibling ASes. We map ASes to organizations using the
methodology from [14].
PoP-level: When a signal involves multiple AS links with disjoint
near-end and far-end ASes and organizations, we classify it as
PoP-level. In particular, we require that the set of affected links
includes at least three different non-sibling near-endASes and three-
different non-sibling far-end ASes that are disjoint. From that, we
infer a PoP-level incident if at least three different AS-level and
operator-level incidents occur in the same binning interval at the
same PoP. Next, we refine our localization for PoP-level outages.
Disambiguation of Outage Signals: Recall, from Figure 2, that
the physical connectivity between two ASes can involve multiple
physical PoPs. With ingress communities we can only identify PoPs
at the near-end of an AS pair. However, depending on the peering
strategy, which includes private peering and local or remote public
peering, there may be up to four facilities between the ingress
PoP and the far-end AS. A failure in any of them will trigger an
outage signal at the near-end facility. To disambiguate such signals
we correlate outage signals from multiple PoPs, combined with
our colocation map. Our assumption is that outages at the near-
end facility, the one identified by the ingress community of an AS,
should affect all paths taggedwith this community that involve links
with far-end ASes co-located in the same facility. More specifically,
we infer the outage in the near-end facility if at least 95% of the
paths with co-located ASes are affected. We allow for a 5% margin
to account for possible inaccuracies in the colocation map, such as
spurious AS-to-facility presences, based on the results in [50].

If this is not the case, we check if the outage location is among
the facilities where the affected far-end ASes have a presence. Ac-
cordingly, we repeat the above process for all facilities where any
of the remote ASes has a presence and for which we have an outage
signal in this binning interval. Figure 2(c) illustrates this process.
When we infer that the near-end facility is not the outage epicenter,
and the far-end peers have no facility in common (after checking
the colocation map) we increase the PoP granularity to IXP-level
and we repeat the same process. Namely, we collect the common
IXPs among the near-end and the far-end peers and we check if all
the common IXP members have been affected, e.g., in Figure 2(c)

the outage source is IX1 and not F3 or F4. If we fail to converge to
a single IXP as the outage source, we cannot make an inference
and resort to targeted traceroute queries to discover the outage
source. If during a binning interval we successfully converge to a
facility/IXP for multiple outage signals, and all the facilities/IXPs
operate in the same city, we abstract the granularity of the incident
to city-level.
Increasing Signal Resolution: Unfortunately, communities are
not always PoP specific but coarser, e.g., only at the IXP level (colo-
cated IXP). To further refine our inference, we utilize again the
colocation maps. For outage signals with IXP communities we
check if all IXP peers or only IXP peers in specific facilities are not
reachable. Thus, we check for each facility that the IXP is involved
only if all routes of that facility are affected. If this is the case, we
can infer that the outage is at the facility rather than the IXP, e.g.,
at F2 and not IX1 in Figure 2(b). We follow a similar methodology
for outage signals detected using city-level communities, with the
additional step of checking for IXP-level failures, if we infer that
the outage did not occur in a facility.

4.4 Data-Plane Analysis
Kepler validates the occurrence and determines the outage duration
via data-plane analysis, using both archived and targeted traceroute
queries. We again initialize the analysis with a set of stable paths,
whereby, we focus on paths that cross the monitored facilities
and IXPs. To construct an extensive set of stable paths without
incurring high measurement cost, we follow an approach similar to
PathCache [95] and consume the publicly available traceroute paths
collected by RIPE Atlas [90], CAIDA’s Ark [15], and iplane [69].
Kepler also has an interface to initiate traceroute campaigns using
public probing platforms [48, 90]. For mapping the traceroutes
to ASes, IXPs, facilities, and data sanitization, we use techniques
proposed in [19, 50, 76]. The facility mapping part is the only one
that requires active measurement. To keep the number of required
active measurements low, we focus on the ASes that are not covered
by our community dictionary, yet are colocated at the facilities of
interest.

Since we use opportunistic measurements for our baseline set of
paths, we have to focus on subpaths. Namely, if an AS pair appears
to consistently interconnect over the same IXP or facility hops in the
traces of the last four consecutive weekly path dumps, we include
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Figure 7: Tuning parameters for Kepler (a) and (b), and Fraction of updates with location communities (c).

the corresponding paths in our baseline dataset. This approach may
remove some AS pairs with very diverse interconnection footprint
which is desirable for the purpose of confirming outages, since path
changes between AS pairs with low path diversity are less likely to
reflect intra-domain routing changes.

WhenKepler detects an outage for a PoP, it identifies the baseline
paths of AS pairs that interconnect over the PoP. Next, it selects the
same sources and destinations and repeats the traceroute queries.
If the fraction of baseline paths that continues to cross the PoP
is below a threshold Tf ail , we confirm the outage and continue
probing to determine the duration of the outage. Otherwise, we
either have a false-positive in our outage inference, or the service
was restored in the mean time. Unfortunately, there is a 5 to 15
minute lag in receiving BGP updates. To eliminate false positives, we
continue the traceroute analysis until the next set of BGP updates.
If the outage signal is still in the BGP data, but the traceroutes did
not confirm the outage, we conclude that we have a false-positive
and disregard it.

When over 50% of the paths (traceroute if available/BGP oth-
erwise) return to the baseline we consider the outage as restored.
However, for a number of outages we observe periods of oscillations.
When two consecutive outages for the same PoP are separated by
less than 12 hours, we conclude that they are part of the same inci-
dent. Its downtime is the sum of the individual outage durations.

5 KEPLER EVALUATION
In this section we present a data-driven evaluation of Kepler’s capa-
bilities. We first analyze the detection sensitivity of our algorithm,
and how we tune Kepler to optimize the detection of PoP-level
outages. We then discuss the reach of Kepler and its limitations,
and we present our validation efforts to understand its accuracy
and precision.

5.1 Sensitivity and Calibration
Kepler has two main parameters: (i) the time window for determin-
ing stable paths and (ii) the threshold which triggers an outage sig-
nal (Tf ail ). For the stable paths, a window smaller than 1 day would
include transient paths, while windows higher than 5 days yield
small sets of stable paths that restrict Kepler’s coverage. Therefore,
we use two days to obtain a stable yet extensive baseline of paths.
Kepler is more sensitive to the threshold parameter, as shown in
Figure 7a. For 2016, it shows the number of detected outage signals

at link-level, AS-level, and facility/IXP-level for thresholds ranging
from 2% to 50%. We assess the efficiency of the different threshold
levels by validating the control-plane outage signals against the
data-plane measurements for each signal. The number of detected
facility/IXP-level outages, which is our focus, remains stable for
thresholds from 2% to 15%. Higher thresholds lead to missing out-
age signals that have been confirmed by concurrent traceroute path
changes. The missed outages are partial, i.e., outages limited to
certain systems of a facility/IXP and affect a subset of its members.
On the other hand, thresholds below 2% increase the number of
outages that have to be investigated, and lead to mis-classification
of AS-level and link-level outages as PoP-level. Note, that some of
the additional outage signals raised for low thresholds may capture
partial outages of limited impact that traceroute measurements fail
to detect. We select a threshold of 10% to be relatively conservative
and minimize wrong inferences, while still being able to capture
medium-scale partial outages.

5.2 Data Analysis Reach and Coverage
A natural question is what fraction of BGP paths, can be analyzed
with Kepler . Figure 7c shows the fraction of IPv4 and IPv6 BGP
updates per month in 2016 with at least one location-encoding
community. About 50% of the IPv4 and 30% of the IPv6 paths in-
clude such communities and, thus, are usable by Kepler . Moreover,
Kepler’s communities consistently tag over 35% of the IPv4 and 28%
of the IPv6 AS links across every BGP snapshot. One reason for
the larger fraction of IPv4 paths/links compared to IPv6 is that ISPs
still focus less on optimizing IPv6 traffic flows.

The next question is at what fraction of the facilities can Kepler
uncover outages. We define a facility as trackable if it has a mini-
mum number of networks whose interconnections can be located
by the communities in Kepler’s dictionary so that our methodology
is applicable. To distinguish PoP-level from AS-level or link-level
incidents, we rely on correlation of updates from multiple members
and we require that we have at least six different members that can
be located through communities, 3 at the near-end of a link, and 3
at the far-end. The colocation databases we mined in Section 3.3
include 1, 742 facilities with at least one AS member. For each of the
1, 742 facilities, Figure 7b shows the total number of their members
compared to the ones that are trackable. There are 1, 209 facilities
with less than 6 members, thus, in principle, we can track 533 fa-
cilities. Of these we miss 130 (24%) for which we currently have
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Table 1: Facilities coverage per continent
Continent Facilities

All >5 members Trackable
Europe 878 305 243
North America 529 132 105
Asia/Pacific 233 70 46
South America 76 19 11
Africa 26 6 4

less than 6 trackable members. Therefore, the detected outages by
Kepler are a lower bound of all possible outages. Note that while
for the trackable facilities we are able to detect all full outages, it is
possible that some partial outages may be undetected depending
on the number of affected trackable facility members. Given the
increase in the community usage and in member ASes we expect
these numbers to increase over the next years. Importantly, we
are able to cover 180 out of 183 (98%) facilities with at least 20
members which are the most prominent interconnection hubs.3
Table 1 breaks down the covered facilities per continent. Kepler’s
coverage is better for Europe and North America, while Africa and
South America have the smallest fraction of trackable facilities.
Note over 80% of all the facilities included in the colocation datasets
(PeeringDB, DataCenterMap) are located either in Europe or in
North America. While the low number of facilities in the other
regions may indicate a geographical bias in the available colocation
databases, the European and North American peering ecosystems
are significantly more developed, with 73% of all the ASNs and 70%
of all IPv4 addresses assigned to countries in the RIPE and ARIN
zones.

5.3 Validation
We first check the accuracy and completeness of our PoP inference
via communities, by obtaining ground-truth data of the facility-
level interconnections from three large ISPs and one major CDN via
private communication that use BGP location communities. Each
gave us their list of facilities with neighbor ASes—in total location
information for roughly 5K AS pairs. We find that our community-
based localization is correct in every case, which is not surprising
given the operational importance of communities. From Figure 8a,
which plots the fraction of AS links vs. the number of facilities (the
main plot is zoomed-in for AS links with more than 1 PoP), we
see that we are missing less than 5% of the interconnections. On
the side, we find that a large fraction of AS pairs only involves a
single physical location. 60% are multilateral peerings between net-
works co-located at a single IXP, while the rest are interconnections
between stub ASes and their transit providers. Still, a significant
number of AS pairs involves many physical locations, in particular,
if the two ASes are tier-1 or tier-2 ASes and peer with each other.

We then check the accuracy of Kepler’s inferences. We consider
as true-positive any inferred outage for which we find an external
data source that confirms the outage occurred in the same facil-
ity/IXP at the same time. Validating false-positives, i.e., inferred
outages that did not happen, is more challenging since it is possible
that an outage was not publicly reported, or that it was reported in
a source that we could not discover. Nonetheless, we consider as

3 Two of the non-trackable facilities with more than 20 members are in India and the
other in Argentina.

false-positives incidents that happened in the same location/time
as an inferred outage, but affected different infrastructures from the
inferred one. We consider as false-negative any outage reported by
an external data source which affected a trackable facility, but for
which Kepler did not infer the outage. To collect validation data we
parsed messages in the NANOG and Outages mailing lists [67, 74],
news articles from specialized websites [25, 26], incident reports
from 18 Network Operating Centers (NOCs) [75], as well as pri-
vately shared information. We successfully validated 53 out of the
159 detected outages (Figure 1) as true positives. We also found 6
cases of false positives. In these cases,Kepler determined the correct
location of the incident but in reality the root cause of the outages
were fiber cuts that affected multiple co-located ASes. In terms of
false-negatives, Kepler did not miss any full outage that affected
trackable facilities. However, we found 4 undetected small-scale
partial outages that affected facilities with less than 30 tenants and
were mis-classified as AS-level incidents.

6 RESULTS
Next, we use Kepler to detect and assess the impact of peering
infrastructure outages during the past five years. To this end, we
provide a detailed analysis of sample incidents enabled by Kepler
and underpin our findings with active measurements to (i) confirm
outages, (ii) track path changes, (iii) measure rerouting times and
RTT increase, and (iv) infer the impact on traffic at seemingly
unrelated locations.

6.1 Detected Facility Outages
The passive detection capabilities of Kepler allow us to conduct
a historical analysis of archived BGP stream and PeeringDB data
from 2012 to 2016. Overall, we detect 159 outages that include 103
outages among 87 facilities, and 56 outages in 41 IXPs, as shown
in Figure 1. To contextualize the completeness of our findings we
collect facility and IXP outages, reported in two popular mailing
lists, NANOG [74] and Outages [67], plus two specialized data
center and colocation websites [25, 26]. They only report 24% of the
detected outages, missing most of the incidents that occur outside
the US and the UK.

We find that 53% of the outages are in Europe, 31% in the US,
and the remaining ones in the other regions. The median outage
duration is 17 minutes and 40% of the outages exceed 1 hour (see
Figure 8b). With regards to frequency we find that the number
of detected outages is not increasing drastically over the last five
years, see Figure 1. In general, we find that IXP outages last longer
than facility outages. One reason may be in the possible causes of
outages.Most facility outages are due to basic infrastructure failures,
e.g., power or fiber cuts. Hence, restoring service mainly depends
on infrastructure recovery. IXPs also suffer from software and/or
configuration failures which apparently take longer to resolve.

To correlate the duration of each outage with general service
availability, we add support lines for 99.9%, 99.99%, and 99.999%
uptime. This is slightly optimistic since 5 IXPs had multiple outages
in the same year. Still, 5% of the monitored 403 facilities fail to
meet the 99.99% uptime mark and 18% the 99.999% uptime mark.
Consequently, to provide services with availability beyond 99.999%
service providers must use redundant facilities.
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Figure 8: Physical location deciphered by BGP updates (a), Outage durations (b), and AMS-IX outage case study (c).

6.2 Outages in Depth: Case Studies
To demonstrate Kepler’s capability to investigate outages we now
focus on three outages in detail. The first one occurred at AMS-IX, a
major IXP in Amsterdam, NL, at 2015-05-13. The outage was caused
by a loop in the switching fabric during planned maintenance [18].
Figure 8c plots the path change fractions for three different aggre-
gation levels. The outage caused the IXP to loose almost all routes
and more than 90% of the exchanged traffic for about 10 minutes.
It took about 15 minutes for the traffic to recover. The incident is
clearly visible in all aggregation levels, but the paths tagged with
the AMS-IX Communities show the largest drop indicating the
actual source of the outage.

However, the changes in aggregated paths can be misleading.
Indeed, Figure 9a shows the effect of two independent facility-level
outages in London [3], on the co-located London-IXP LINX, and
a third facility, TH East. At time A, when the first outage occurs,
we see almost no change at the city level aggregation, while both
LINX and TH East are affected. At time B we observe a city level
signal, which does not correspond to a facility outage but rather a
re-routing of paths from a major Tier-1 AS. At time C, when the
second outage happens, we witness a major drop only through TH
East. Kepler identifies correctly the A and C signals as PoP-specific
and the B signal as AS-specific, and instead of inferring either LINX
or TH East as the potential sources of the outages it proceeds to the
signal localization by examining the impact of the outage on the
far-end ASes against the facilities where these ASes are co-located.

This process is illustrated in Figure 9b, where it becomes clear
that at time A and C two major subsets of the ASes at TC HEX8/9
and at TH North are affected. The far-end ASes in other London
facilities (not depicted) show no concurrent signs of outage, al-
lowing us to identify correctly TC HEX8/9 and TH North as the
outage sources. Also note that at time B only a single AS is affected.
This plot also highlights that ASes handle outages differently. Some
return to their “stable” path once the outage is over, while other
remain with their new path. This set of outages illustrates Kepler’s
ability to disambiguate the source of outage signals to facilities.

6.3 Outages in Depth: Active Measurements
Next, we highlight the benefits of incorporating active measure-
ments in Kepler . We focus on the outage at AMS-IX.

Backup paths: Figure 10a shows the BGP path changes while
Figure 10b shows the traceroute path changes. While the overall
path changes follow the same trend, the backup paths that are
activated differ. The BGP Communities are mainly provided by
large ASes with very diverse peering connectivity, allowing them
to activate alternative peering links at remote IXPs. On the other
hand, the majority of traceroute probes are hosted in local ASes,
and so are the targets, and thus most, 75% of the alternate routes
are via the transit interconnections.
Path restoration time: BGP path re-convergence took about 4
hours until 95% of the paths returned. Approximately 5% of the
paths did not return even days after the outage. Such permanent
route changes are either due to manual intervention or by the BGP
decision process that prefers the newest path to break ties and min-
imize route flapping. Although, 85% of the traceroute paths return
within one hour back to AMS-IX, a significant fraction continues to
cross transit links. These results show that the actual impact of an
outage on both control-plane and data-plane routing paths signifi-
cantly outlasts the root cause of the outage, possibly necessitating
a review of the SLAs provided by infrastructure operators.
Impact on End-to-end Delays: Kepler uses the traceroute data
to assess the impact of an outage in round-trip time (RTT). While
we acknowledge that RTTs from traceroute may not reflect RTTs
as seen by TCP, they serve as indications of performance changes.
Figure 10c shows the empirical cumulative distribution function of
the RTT delays for the paths that traverse AMS-IX. We distinguish
three time periods: (i) 20 minutes before the outage, (ii) during
the outage, and (iii) 20 minutes after the outage, i.e., 10 minutes
after the operation returned to normal. Moreover, we separated the
paths into those that use AMS-IX (AMS-IX) and those that do not
(No AMS-IX) during and after the outage. During the outage the
median RTT rises by more than 100 msec for rerouted paths. For
unchanged paths, the median RTT increase is moderate, and while
some experience significant increase the tail does not grow as much.
After the outage, this RTT increase disappears. Moreover, paths
that returned to AMS-IX within 20 minutes experience roughly the
same RTT as before the outage. However, 30% of the paths that still
use the alternative interconnections continue to see increased RTTs
of about 40 msecs due to sub-optimal routing in terms of distance.
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Figure 10: AMS-IX outage seen by Kepler (a)-(c), and by IPFIX traffic at EU-IXP (d).

6.4 Outages: Remote Impact
Remote Networks: To understand the impact of infrastructure
outages we study the locations of the ASes that have been affected
by the two London outages. We localize the IPs of the far-end
interfaces of the affected ASes identified by Kepler’s traceroute
using DRoP [58]. Figure 9c plots the distance from London in km vs.
the number of affected ASes. Surprisingly, only 44% of the far-end
interfaces are also in London. More than 45% of the interfaces are
in a different country with more than 20% outside Europe. The
main reason for such a widespread impact of localized failures is
the increasing popularity of remote peering, an interconnection
practice that allows ASes without physical presence at a peering
hub to interconnect through layer-2 transport providers that resell
peering ports across remote facilities [65]. Castro et al. estimated
that 20% of the members in large IXPs connect remotely [16], which
is consistent with our findings. This underlines the importance
of understanding the facility-level topology when analyzing the
impact of an outage.
Remote Infrastructures: To further challenge the expectation
that a “local outage has only local impact”, we complement Kepler
with passive measurements from a major European IXP (EU-IXP).
Figure 10d depicts the traffic volumes in Gbps at EU-IXP during the
AMS-IX outage based on IPFIX data collected at its switching fabric
with sampling rate 1/10K [21]. The two IXPs are 360 kilometers
away. During the AMS-IX outage (t0), we notice a sharp drop in
IPv4 traffic—about 10% (215 Gbps). After 10 minutes – when the
AMS-IX outage stopped (t1) the traffic is rising above the expected
average volume. This lasts for approximately 15 minutes. After the
outage was restored (t2), the traffic returns to normal levels.

To scrutinize this counter-intuitive observation we study the per
member traffic. Only 136/533members have a significant reduction
in traffic (mean loss is 1 Gbps, max. loss 25 Gbps), with the rest
seeing a mean growth of 188 Mbps (max.12 Gbps). However, traffic
losses dominate even though moderate traffic increases are typical
during this time of the day. The top 25 ASes with a traffic decrease
account for 83% of the total loss. The outage above is no singular
event. During other outages we observe similar traffic reductions,
albeit smaller as the distance increases.
Remote Impact Explained: The conventional wisdom is that net-
work operators should use separate edge routers for each colocation
facility or IXP. However, due to the high cost of edge routers, op-
erators often use a single router for multiple facilities introducing
interdependencies among peering infrastructures, especially when
they have common members. In addition, operational best practice
prioritizes peering over upstream to keep traffic local and to reduce
cost. Thus, prefixes reachable via IXPs will use the IXP rather than
an upstream provider. Consider a scenario where an ISP uses two
IXPs and the capacity of neither is sufficient for the total traffic of
the ISP. While using peering links beyond 50% violates best prac-
tices, price pressure may force operators to ignore such guidelines.
During outages ISPs may rely on their upstream causing a traffic
drop at the other IXP, without extra cost for short outages due to
the 95th percentile [86] pricing.

The most important reason is asymmetric paths [80], which are
common in today’s Internet. For peering infrastructures we call a
path asymmetric if one direction only involves facility A and the
reverse path only involves facility B. An outage at either of the two
facilities causes a reduction of traffic at the other. We find that more
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than 10% of all (source, destination) combinations between AMS-IX
and EU-IXP members have asymmetric routes, which account for
most of the traffic losses at EU-IXP.

7 IMPLICATIONS
Implications for Policymakers: The operation of our system,
Kepler , and our analysis increases the transparency in Internet
infrastructure outages. This can inform best practices for improving
resilience, and would be of use to regulators and policy makers
given the critical role of such infrastructures [30, 39]. In addition,
with Kepler one can provide testimony based on hard evidence to
assess the degree of violation of service level agreements, e.g., the
5 nines reliability, and to characterize an outage as full or partial,
and to assess the impact on the operation of a network.
Implications for Peering: Our analysis shows that redundant
peering strategies may increase the resilience to outages. Still, in
some cases, we observed peering disruptions even when redundant
peering was available. We argue that there is significant space for
improving peering resilience by taking into account the physical
isolation of peering infrastructures. Unfortunately, the interdepen-
dency among the various peering infrastructures is often not well
known, and thus greater resilience might be achieved with more col-
laboration between peering infrastructure operators and network
operators.
Implications for Operation: Our study shows that an increasing
number of networks tag their BGP announcements with commu-
nities, and that about half of the prefix announcements include
location-based communities. This practice is of great help for de-
tecting outages. However, we should point out that the propagation
of location-based communities has a downside. The leakage of this
information enables easier detection by third parties of the location
where two networks establish interconnections. This leakage can
be used for business intelligence, and for targeted attacks. Hence,
we will make Kepler available via an interactive interface. But we
will only share our dictionary of location-based communities on
request.

8 CONCLUSION
Outages at colocation facilities and IXPs affect the operation of
hundreds of networks. In this paper, we show that control-plane
messages provide an excellent, yet unexplored source of informa-
tion that can be utilized to detect peering infrastructure outages
in the wild. We develop a methodology to analyze the values of
the BGP Communities attribute to accurately detect the location
of a peering outage at the level of a building. While our method
is general enough to be applied to any stream of BGP data, we
show that the implementation is far from trivial. Based on our
methodology, we built and operate Kepler for detecting peering
infrastructure outages. Over a 5-year period, we detected about
160 colocation facility or IXP outages, which is four times what
could be discerned from operator mailing lists and related sources.
Our results show that local outages at these peering infrastructures
can have an impact on remote networks and seemingly unrelated
remote peering infrastructures. Thus, Kepler can provide feedback
to operators, researchers, and policy makers alike to improve the
understanding of the Internet’s resilience.
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