
ar
X

iv
:1

10
9.

55
42

v1
  [

cs
.C

R
]  

26
 S

ep
 2

01
1

Gaming security by obscurity

Dusko Pavlovic
Royal Holloway, University of London, and University of Twente

dusko.pavlovic@rhul.ac.uk

ABSTRACT
Shannon [35] sought security against the attacker with un-
limited computational powers: if an information source con-

veys some information, then Shannon’s attacker will surely

extract that information. Diffie and Hellman [12] refined
Shannon’s attacker model by taking into account the fact
that the real attackers are computationally limited. This
idea became one of the greatest new paradigms in computer
science, and led to modern cryptography.

Shannon also sought security against the attacker with un-
limited logical and observational powers, expressed through
the maxim that ”the enemy knows the system”. This view
is still endorsed in cryptography. The popular formulation,
going back to Kerckhoffs [22], is that ”there is no security
by obscurity”, meaning that the algorithms cannot be kept
obscured from the attacker, and that security should only
rely upon the secret keys. In fact, modern cryptography goes
even further than Shannon or Kerckhoffs in tacitly assuming
that if there is an algorithm that can break the system, then

the attacker will surely find that algorithm. The attacker is
not viewed as an omnipotent computer any more, but he is
still construed as an omnipotent programmer. The ongoing
hackers’ successes seem to justify this view.

So the Diffie-Hellman step from unlimited to limited com-
putational powers has not been extended into a step from
unlimited to limited logical or programming powers. Is the
assumption that all feasible algorithms will eventually be
discovered and implemented really different from the as-
sumption that everything that is computable will eventually
be computed? The present paper explores some ways to re-
fine the current models of the attacker, and of the defender,
by taking into account their limited logical and program-
ming powers. If the adaptive attacker actively queries the
system to seek out its vulnerabilities, can the system gain
some security by actively learning attacker’s methods, and
adapting to them?
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1. INTRODUCTION
New paradigms change the world. In computer science,

they often sneak behind researchers’ backs: the grand vi-
sions often frazzle into minor ripples (like the fifth genera-
tion of programming languages), whereas some modest goals
engender tidal waves with global repercussions (like moving
the cursor by a device with wheels, or connecting remote
computers). So it is not easy to conjure a new paradigm
when you need it.

Perhaps the only readily available method to generate new
paradigms at leisure is by disputing the obvious. Just in
case, I question on this occasion not one, but two generally
endorsed views:

• Kerckhoffs Principle that there is no security by ob-
scurity, and

• Fortification Principle that the defender has to defend
all attack vectors, whereas the attacker only needs to
attack one.

To simplify things a little, I argue that these two princi-
ples as related. The Kerckhoffs Principle demands that a
system should withstand attackers unhindered probing. In
the modern security definitions, this is amplified to the re-
quirement that the system should resist a family of attacks,
irrespective of the details of their algorithms. The adaptive
attackers are thus allowed to query the system, whereas the
system is not allowed to query the attackers. The resulting
information asymmetry makes security look like a game bi-
ased in favor of the attackers. The Fortification Principle is
an expression of that asymmetry. In economics, information
asymmetry has been recognized as a fundamental problem,
worth the Nobel Prize in Economics for 2001 [39, 3, 37]. In
security research, the problem does not seem to have been
explicitly addressed, but there is, of course, no shortage of
efforts to realize security by obscurity in practice — albeit
without any discernible method. Although the practices of
analyzing the attackers and hiding the systems are hardly
waiting for anyone to invent a new paradigm, I will pur-
sue the possibility that a new paradigm might be sneaking
behind our backs again, like so many old paradigms did.

Outline of the paper
While I am on the subject of security paradigms, I decided
to first spell out a general overview of the old ones. An
attempt at this is in Sec. 2. It is surely incomplete, and
perhaps wrongheaded, but it may help a little. It is difficult
to communicate about the new without an agreement about
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the old. Moreover, it will be interesting to hear not only
whether my new paradigms are new, but also whether my
old paradigms are old.

The new security paradigm arising from the slogan ”Know

your enemy” is discussed in Sec. 3. Of course, security engi-
neers often know their enemies, so this is not much of a new
paradigm in practice. But security researchers often require
that systems should be secure against universal families of
attackers, without knowing anything about who the enemy
is at any particular moment. With respect to such static
requirements, a game theoretic analysis of dynamics of se-
curity can be viewed as an almost-new paradigm (with few
previous owners). In Sec.3.1 I point to the practical devel-
opments that lead up to this paradigm, and then in Sec. 3.2
I describe the game of attack vectors, which illustrates it.
This is a very crude view of security process as a game of
incomplete information. I provide a simple pictorial analy-
sis of the strategic interactions in this game, which turn out
to be based on acquiring information about the opponent’s
type and behavior. A sketch of a formal model of security
games of incomplete information, and of the game of attack
vectors, is given in Appendix A.

A brand new security paradigm of ”Applied security by

obscurity” is described in Sec. 4. It is based on the idea
of logical complexity of programs, which leads to one way
programming similarly like computational complexity led to
one way computations. If achieved, one way programming
will be a powerful tool in security games.

A final attempt at a summary, and some comments about
the future research, and the pitfalls, are given in Sec. 5.

Related work
The two new paradigms offer two new tools for the security
toolkit: games of incomplete information, and algorithmic
information theory.

Game theoretic techniques have been used in applied secu-
rity for a long time, since there a need for strategic reasoning
often arises in practice. A typical example from the early
days is [11], where games of imperfect information were used.
Perhaps the simplest more recent game based model are the
attack-defense trees, which boil down to zero-sum extensive
games [25]. Another application of games of imperfect infor-
mation appeared, e.g., in a previous edition of this confer-
ence [28]. Conspicuously, games of incomplete information
do not seem to have been used, which seems appropriate
since they analyze how players keep each other in obscurity.
The coalgebraic presentation of games and response rela-
tions, presented in the Appendix, is closely related with the
formalism used in [31].

The concept of logical complexity, proposed in Sec. 4, is
based on the ideas of algorithmic information theory [24,
36] in general, and in particular on the idea of logical depth
[10, 26, 6]. I propose to formalize logical complexity by lift-
ing logical depth from the Gödel-Kleene indices to program
specifications [19, 8, 9, 14, 34, 32]. The underlying idea
that a Gödel-Kleene index of a program can be viewed as
its ”explanation” goes back to Kleene’s idea of realizability
[23] and to Solomonoff’s formalization of inductive inference
[36].

2. OLD SECURITY PARADIGMS
Security means many things to many people. For a soft-

ware engineer, it often means that there are no buffer over-

flows or dangling pointers in the code. For a cryptographer,
it means that any successful attack on the cypher can be
reduced to an algorithm for computing discrete logarithms,
or to integer factorization. For a diplomat, security means
that the enemy cannot read the confidential messages. For
a credit card operator, it means that the total costs of the
fraudulent transactions and of the measures to prevent them
are low, relative to the revenue. For a bee, security means
that no intruder into the beehive will escape her sting. . .

Is it an accident that all these different ideas go under
the same name? What do they really have in common?
They are studied in different sciences, ranging from com-
puter science to biology, by a wide variety of different meth-
ods. Would it be useful to study them together?

2.1 What is security?
If all avatars of security have one thing in common, it is

surely the idea that there are enemies and potential attack-

ers out there. All security concerns, from computation to
politics and biology, come down to averting the adversarial
processes in the environment, that are poised to subvert the
goals of the system. There are, for instance, many kinds of
bugs in software, but only those that the hackers use are a
security concern.

In all engineering disciplines, the system guarantees a
functionality, provided that the environment satisfies some
assumptions. This is the standard assume-guarantee format
of the engineering correctness statements. Such statements
are useful when the environment is passive, so that the as-
sumptions about it remain valid for a while. The essence of
security engineering is that the environment actively seeks
to invalidate system’s assumptions.

Security is thus an adversarial process. In all engineer-
ing disciplines, failures usually arise from engineering errors
and noncompliance. In security, failures arise in spite of the
compliance with the best engineering practices of the mo-
ment. Failures are the first class citizens of security: every
key has a lifetime, and in a sense, every system too. For
all major software systems, we normally expect security up-
dates, which usually arise from attacks, and often inspire
them.

2.2 Where did security come from?
The earliest examples of security technologies are found

among the earliest documents of civilization. Fig. 1 shows
security tokens with a tamper protection technology from al-
most 6000 years ago. Fig.2 depicts the situation where this
technology was probably used. Alice has a lamb and Bob
has built a secure vault, perhaps with multiple security lev-
els, spacious enough to store both Bob’s and Alice’s assets.
For each of Alice’s assets deposited in the vault, Bob issues a
clay token, with an inscription identifying the asset. Alice’s
tokens are then encased into a bulla, a round, hollow ”en-
velope” of clay, which is then baked to prevent tampering.
When she wants to withdraw her deposits, Alice submits her
bulla to Bob, he breaks it, extracts the tokens, and returns
the goods. Alice can also give her bulla to Carol, who can
also submit it to Bob, to withdraw the goods, or pass on
to Dave. Bullæ can thus be traded, and they facilitate ex-
change economy. The tokens used in the bullæ evolved into
the earliest forms of money, and the inscriptions on them
led to the earliest numeral systems, as well as to Sumerian
cuneiform script, which was one of the earliest alphabets.



Figure 1: Tamper protection from 3700 BC

AliceBob

Figure 2: To withdraw her sheep from Bob’s

secure vault, Alice submits a tamper-proof

token from Fig. 1.

Security thus predates literature, science, mathematics, and
even money.

2.3 Where is security going?
Through history, security technologies evolved gradually,

serving the purposes of war and peace, protecting public
resources and private property. As computers pervaded all
aspects of social life, security became interlaced with com-
putation, and security engineering came to be closely related
with computer science. The developments in the realm of
security are nowadays inseparable from the developments in
the realm of computation. The most notable such develop-
ment is, of course, cyber space.

Paradigms of computation
In the beginning, engineers built computers, and wrote pro-
grams to control computations. The platform of computa-
tion was the computer, and it was used to execute algorithms
and calculations, allowing people to discover, e.g., fractals,
and to invent compilers, that allowed them to write and exe-
cute more algorithms and more calculations more efficiently.
Then the operating system became the platform of compu-
tation, and software was developed on top of it. The era of
personal computing and enterprise software broke out. And
then the Internet happened, followed by cellular networks,
and wireless networks, and ad hoc networks, and mixed net-
works. Cyber space emerged as the distance-free space of
instant, costless communication. Nowadays software is de-
veloped to run in cyberspace. The Web is, strictly speaking,
just a software system, albeit a formidable one. A botnet is
also a software system. As social space blends with cyber
space, many social (business, collaborative) processes can
be usefully construed as software systems, that ran on social
networks as hardware. Many social and computational pro-
cesses become inextricable. Table 1 summarizes the crude
picture of the paradigm shifts which led to this remarkable
situation.

But as every person got connected to a computer, and ev-
ery computer to a network, and every network to a network
of networks, computation became interlaced with communi-
cation, and ceased to be programmable. The functioning of
the Web and of web applications is not determined by the
code in the same sense as in a traditional software system:
after all, web applications do include the human users as a
part of their runtime. The fusion of social and computa-
tional processes in cyber-social space leads to a new type of

information processing, where the purposeful program ex-
ecutions at the network nodes are supplemented by spon-
taneous data-driven evolution of network links. While the
network emerges as the new computer, data and metadata
become inseparable, and a new type of security problems
arises.

Paradigms of security
In early computer systems, security tasks mainly concerned
sharing of the computing resources. In computer networks,
security goals expanded to include information protection.
Both computer security and information security essentially
depend on a clear distinction between the secure areas, and
the insecure areas, separated by a security perimeter. Secu-
rity engineering caters for computer security and for infor-
mation security by providing the tools to build the security
perimeter. In cyber space, the secure areas are separated
from the insecure areas by the ”walls” of cryptography; and
they are connected by the ”gates” of cryptographic proto-
cols.1 But as networks of computers and devices spread
through physical and social spaces, the distinctions between
the secure and the insecure areas become blurred. And in
such areas of cyber-social space, information processing does
not yield to programming, and cannot be secured just by
cryptography and protocols. What else is there?

3. A SECOND-HAND BUT ALMOST-NEW
SECURITY PARADIGM: KNOW YOUR
ENEMY

3.1 Security beyond architecture
Let us take a closer look at the paradigm shift to post-

modern cyber security in Table 2. It can be illustrated as
the shift from Fig. 3 to Fig. 4. The fortification in Fig. 3
represents the view that security is in essence an architec-
tural task. A fortress consists of walls and gates, separating
the secure area within from the insecure area outside. The

1This is, of course, a blatant oversimplification, as are many
other statements I make. In a sense, every statement is an
oversimplification of reality, abstracting away the matters
deemed irrelevant. The gentle reader is invited to squint
whenever any of the details that I omit do seem relevant,
and add them to the picture. The shape of a forest should
not change when some trees are enhanced.



age ancient times middle ages modern times

platform computer operating system network

applications Quicksort, compilers MS Word, Oracle WWW, botnets

requirements correctness, termination liveness, safety trust, privacy

tools programming languages specification languages scripting languages

Table 1: Paradigm shifts in computation

age middle ages modern times postmodern times

space computer center cyber space cyber-social space

assets computing resources information public and private resources

requirements availability, authorization integrity, confidentiality trust, privacy

tools locks, tokens, passwords cryptography, protocols mining and classification

Table 2: Paradigm shifts in security

boundary between these two areas is the security perime-
ter. The secure area may be further subdivided into the
areas of higher security and the areas of lower security. In
cyber space, as we mentioned, the walls are realized using
crypto systems, whereas the gates are authentication pro-
tocols. But as every fortress owner knows, the walls and

Figure 3: Static security

the gates are not enough for security: you also need some
soldiers to defend it, and some weapons to arm the soldiers,
and some craftsmen to build the weapons, and so on. More-
over, you also need police and judges to maintain security
within the fortress. They take care for the dynamic aspects
of security. These dynamic aspects arise from the fact that
sooner or later, the enemies will emerge inside the fortress:
they will scale the walls at night (i.e. break the crypto), or
sneak past the gatekeepers (break the protocols), or build
up trust and enter with honest intentions, and later defect
to the enemy; or enter as moles, with the intention to strike
later. In any case, security is not localized at the security
perimeters of Fig. 3, but evolves in-depth, like on Fig. 4,

through social processes, like trust, privacy, reputation, in-
fluence.

Figure 4: Dynamic security

In summary, besides the methods to keep the attackers
out, security is also concerned with the methods to deal with
the attackers once they get in. Security researchers have
traditionally devoted more attention to the former family of
methods. Insider threats have attracted a lot of attention
recently, but a coherent set of research methods is yet to
emerge.

Interestingly, though, there is a sense in which security
becomes an easier task when the attacker is in. Although
unintuitive at the first sight, this idea becomes natural when
security processes are viewed in a broad context of the infor-
mation flows surrounding them (and not only with respect
to the data designated to be secret or private). To view
security processes in this broad context, it is convenient to
model them as games of incomplete information [4], where
the players do not have enough information to predict the
opponent’s behavior. For the moment, let me just say that
the two families of security methods (those to keep the at-



tackers out, and those to catch them when they are in) cor-
respond to two families of strategies in certain games of in-
complete information, and turn out to have quite different
winning odds for the attacker, and for defender. In fact,
they have the opposite winning odds.

In the fortress mode, when the defenders’ goal is to keep
the attackers out, it is often observed that the attackers
only need to find one attack vector to enter the fortress,
whereas the defenders must defend all attack vectors to pre-
vent them. When the battle switches to the dynamic mode,
and the defense moves inside, then the defenders only need
to find one marker to recognize and catch the attackers,
whereas the attackers must cover all their markers. This
strategic advantage is also the critical aspect of the immune
response, where the invading organisms are purposely sam-
pled and analyzed for chemical markers. Some aspects of
this observation have, of course, been discussed within the
framework of biologically inspired security. Game theoretic
modeling seems to be opening up a new dimension in this
problem space. We present a sketch to illustrate this new
technical and conceptual direction.

3.2 The game of attack vectors
Arena. Two players, the attacker A and the defender D,
battle for some assets of value to both of them. They are
given equal, disjoint territories, with the borders of equal
length, and equal amounts of force, expressed as two vector
fields distributed along their respective borders. The players
can redistribute the forces and move the borders of their
territories. The territories can thus take any shapes and
occupy any areas where the players may move them, obeying
the constraints that

(i) the length of the borders of both territories must be
preserved, and

(ii) the two territories must remain disjoint, except that
they may touch at the borders.

It is assumed that the desired asset Θ is initially held by the
defender D. Suppose that storing this asset takes an area
of size θ. Defender’s goal is thus to maintain a territory pD
with an area

∫

pD ≥ θ. Attacker’s goal is to decrease the
size of pD below θ, so that the defender must release some of
the asset Θ. To achieve this, the attacker A must bring his2

forces to defender D’s borders, and push into his territory.
A position in the game can thus be something like Fig. 5.

Game. At each step in the game, each player makes a move
by specifying a distribution of his forces along his borders.
Both players are assumed to be able to redistribute their
forces with equal agility. The new force vectors meet at
the border, they add up, and the border moves along the
resulting vector. So if the vectors are, say, in the opposite
directions, the forces subtract and the border is pushed by
the greater vector.

The players observe each other’s positions and moves in
two ways:

(a) Each player knows his own moves, i.e. distributions,
and sees how his borders change. From the change in
the previous move, he can thus derive the opponent’s

2I hope no one minds that I will be using ”he” for both
Attacker and Defender, in an attempt to avoid distracting
connotations.

Defense

Attack

Figure 5: Fortification

Defense

Attack

Figure 6: Honeypot

current distribution of the forces along the common
part of the border.

(b) Each player sees all movement in the areas enclosed
enclosed within his territory, i.e. observes any point on
a straight line between any two points that he controls.
That means that each player sees the opponent’s next
move at all points that lie within the convex hull of his
territory, which we call range.

According to (b), the position in Fig. 5 allows A to see D’s
next move. D, on the other hand only gets to know A’s move
according to (a), when his own border changes. This depicts,
albeit very crudely, the information asymmetry between the
attacker and the defender.

Question. How should rational players play this game?

3.2.1 Fortification strategy

Goals. Since each player’s total force is divided by the
length of his borders, the maximal area defensible by a given
force has the shape of a disk. All other shapes with the
boundaries of the same length enclose smaller areas. So D’s
simplest strategy is to acquire and maintain the smallest disk
shaped territory of size θ.3 This is the fortification strategy:
D only responds to A’s moves.

A’s goal is, on the other hand, to create ”dents” in D’s
territory pD, since the area of pD decreases most when its
convexity is disturbed. If a dent grows deep enough to reach
across pD, or if two dents in it meet, then pD disconnects
in two components. Given a constant length of the border,
it is easy to see that the size of the enclosed area decreases
exponentially as it gets broken up. In this way, the area
enclosed by a border of given length can be made arbitrarily
small.

But how can A create dents? Wherever he pushes, the
defender will push back. Since their forces are equal and
constant, increasing the force along one vector decreases the
force along another vector.

Optimization tasks. To follow the fortification strategy,
D just keeps restoring pD to a disk of size θ. To counter
D’s defenses, A needs to find out where they are the weak-
est. He can observe this wherever D’s territory pD is within

3This is why the core of a medieval fortification was a round
tower with a thick wall and a small space inside. The fortress
itself often is not round, because the environment is not flat,
or because the straight walls were easier to build; but it
is usually at least convex. Later fortresses, however, had
protruding towers — to attack the attacker. Which leads us
beyond the fortification strategy. . .
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Figure 8: Adaptation

A’s range, i.e. contained in the convex hull of pA. So A
needs to maximize the intersection of his range with D’s
territory. Fig. 5 depicts a position where this is achieved: D
is under A’s siege. It embodies the Fortification Principle,
that the defender must defend all attack vectors, whereas
the attacker only needs to select one. For a fast push, A
randomly selects an attack vector, and waits for D to push
back. Strengthening D’s defense along one vector weakens
it along another one. Since all of D’s territory is within A’s
range, A sees where D’s defense is the weakest, and launches
the next attack there. In contrast, D’s range is initially lim-
ited to his own disk shaped territory. So D only ”feels” A’s
pushes when his own borders move. At each step, A pushes
at D’s weakest point, and creates a deeper dent. A does
enter into D’s range, but D’s fortification strategy makes
no use of the information that could be obtained about A.
The number of steps needed to decrease pD below θ depends
on how big are the forces and how small are the contested
areas.

3.2.2 Adaptation strategy
What can D do to avoid the unfavorable outcome of the

fortification strategy? The idea is that he should learn to
know his enemy: he should also try to shape his territory
to maximize the intersection of his range with A’s territory.
D can lure A into his range simply letting A dent his terri-
tory. This is the familiar honeypot approach, illustrated on
Fig. 6. Instead of racing around the border to push back
against every attack, D now gathers information about A’s
his next moves within his range. If A maintains the old siege
strategy, and pushes to decrease D’s territory, he will accept
D’s territory, and enter into his range more and more.

Fig. 7 depicts a further refinement of D’s strategy, where
the size of D’s territory, although it is still his main goal
in the game, is assigned a smaller weight than the size of
A’s territory within D’s range. This is the adaptation strat-
egy. The shape of D’s territory is determined by the task
of gathering the information about A. If A follows the final
part of his siege strategy, he will accept to be observed in
exchange for the territory, and the final position depicted on
Fig. 8 will be reached. Here A’s attacks are observed and
prevented. D wins. The proviso is that D has enough ter-
ritory to begin with that there is enough to store his assets
after he changes its shape in order to control A. Another
proviso is that A blindly sticks with his siege strategy.

To prevent this outcome, A will thus need to refine his
strategy, and not release D from his range, or enter his range
so easily. However, if he wants to decrease D’s territory, A
will not be able to avoid entering D’s range altogether. So

both players’ strategy refinements will evolve methods to
trade territory for information, making increasingly efficient
use of the available territories. Note that the size of D’s
territory must not drop below θ, whereas the size of A’s
territory can, but then he can only store a part of whatever
assets he may force D to part with.

A formalism for a mathematical analysis of this game is
sketched in the Appendix.

3.3 What does all this mean for security?
The presented toy model provides a very crude picture of

the evolution of defense strategies from fortification to adap-
tation. Intuitively, Fig. 5 can be viewed as a fortress under
siege, whereas Fig. 8 can be interpreted as a macrophage
localizing an invader. The intermediate pictures show the
adaptive immune system luring the invader and sampling
his chemical markers.

But there is nothing exclusively biological about the adap-
tation strategy. Figures 5–8 could also be viewed entirely in
the context of Figures 3–4, and interpreted as the transi-
tion from the medieval defense strategies to modern politi-
cal ideas. Fig. 8 could be viewed as a depiction of the idea
of ”preemptive siege”: while the medieval rulers tried to
keep their enemies out of their fortresses, some of the mod-
ern ones try to keep them in their jails. The evolution of
strategic thinking illustrated on Figures 5-8 is pervasive in
all realms of security, i.e. wherever the adversarial behaviors
are a problem, including cyber-security.

And although the paradigm of keeping an eye on your en-
emies is familiar, the fact that it reverts the odds of security
and turns them in favor of the defenders does not seem to
have received enough attention. It opens up a new game
theoretic perspective on security, and suggests a new tool
for it.

4. A BRAND NEW SECURITY PARADIGM:
APPLIED SECURITY BY OBSCURITY

4.1 Gaming security basics
Games of information. In games of luck, each player
has a type, and some secrets. The type determines player’s
preferences and behaviors. The secrets determine player’s
state. E.g., in poker, the secrets are the cards in player’s
hand, whereas her type consists of her risk aversion, her
gaming habits etc. The imperfect information means that
all players’ types are a public information, whereas their
states are unknown, because their secrets are private. In
games of incomplete information, both players’ types and
their secrets are unknown. The basic ideas and definitions
of the complete and incomplete informations in games go all
the way back to von Neumann and Morgenstern [40]. The
ideas and techniques for modeling incomplete information
are due to Harsanyi [18], and constitute an important part
of game theory [27, 17, 4].

Security by secrecy. If cryptanalysis is viewed as a game,
then the algorithms used in a crypto system can be viewed
as the type of the corresponding player. The keys are, of
course, its secrets. In this framewrok, Claude Shannon’s slo-
gan that ”the enemy knows the system” asserts that crypt-
analysis should be viewed as a game of imperfect informa-
tion. Since the type of the crypto system is known to the
enemy, it is not a game of incomplete information. Another



statement of the same imperative is the Kerckhoffs’ slogan
that ”there is no security by obscurity”. Here the obscurity
refers to the type of the system, so the slogan thus suggests
that the security of a crypto system should only depend on
the secrecy of its keys, and remain secure if its type is known.
In terms of physical security, both slogans thus say that the
thief should not be able to get into the house without the
right key, even if he knows the mechanics of the lock. The
key is the secret, the lock is the type.

Security by obscurity. And while all seems clear, and we
all pledge allegiance to the Kerckhoffs’ Principle, the prac-
tices of security by obscurity abound. E.g., besides the locks
that keep the thieves out, many of us use some child-proof
locks, to protect toddlers from dangers. A child-proof lock
usually does not have a key, and only provides protection
through the obscurity of its mechanism.

On the cryptographic side, security by obscurity remains
one of the main tools, e.g., in Digital Rights Management
(DRM), where the task is to protect the digital content from
its intended users. So our DVDs are encrypted to prevent
copying; but the key must be on each DVD, or else the DVD
could not be played. In order to break the copy protection,
the attacker just needs to find out where to look for the key;
i.e. he needs to know the system used to hide the key. For a
sophisticated attacker, this is no problem; but the majority
is not sophisticated. The DRM is thus based on the second-
hand but almost-new paradigm from the preceding section:
the DVD designers study the DVD users and hide the keys
in obscure places. From time to time, the obscurity wears
out, by an advance in reverse engineering, or by a lapse of
defenders attention4. Security is then restored by analyzing
the enemy, and either introducing new features to stall the
ripping software, or by dragging the software distributors to
court. Security by obscurity is an ongoing process, just like
all of security.

4.2 Logical complexity
What is the difference between keys and locks? The
conceptual problem with the Kerckhoffs Principle, as the re-
quirement that security should be based on secret keys, and
not on obscure algorithms, is that it seems inconsistent, at
least at the first sight, with the Von Neumann architecture
of our computers, where programs are represented as data.
In a computer, both a key and an algorithm is a string of
bits. Why can I hide a key and cannot hide an algorithm?
More generally, why can I hide data, and cannot hide pro-
grams?

Technically, the answer boils down to the difference be-
tween data encryption and program obfuscation. The task
of encryption is to transform a data representation in such
a way that it can be recovered if and only if you have a key.

4The DVD Copy Scramble System (CSS) was originally re-
verse engineered to allow playing DVDs on Linux computers.
This was possibly facilitated by an inadvertent disclosure
from the DVD Copy Control Association (CAA). DVD CAA
pursued the authors and distributors of the Linux DeCSS
module through a series of court cases, until the case was
dismissed in 2004 [15]. Ironically, the cryptography used in
DVD CSS has been so weak, in part due to the US export
controls at the time of design, that any computer fast enough
to play DVDs could find the key by brute force within 18
seconds [38]. This easy cryptanalytic attack was published
before DeCSS, but seemed too obscure for everyday use.

The task of obfuscation is to transform a program repre-
sentation so that the obfuscated program runs roughly the
same as the original one, but that the original code (or some
secrets built into it) cannot be recovered. Of course, the lat-
ter is harder, because encrypted data just need to be secret,
whereas an obfuscated program needs to be secret and and
to run like the original program. In [5], it was shown that
some programs must disclose the original code in order to
perform the same function (and they disclose it in a nontriv-
ial way, i.e. not by simply printing out their own code). The
message seems consistent with the empiric evidence that re-
verse engineering is, on the average5, effective enough that
you don’t want to rely upon its hardness. So it is much
easier to find out the lock mechanism, than to find the right
key, even in the digital domain.

One-way programming? The task of an attacker is to
construct an attack algorithm. For this, he needs to under-
stand the system. The system code may be easy to reverse
engineer , but it may be genuinely hard to understand, e.g.
if it is based on a genuinely complex mathematical construc-
tion. And if it is hard to understand, then it is even harder to
modify into an attack, except in very special cases. The sys-
tem and the attack can be genuinely complex to construct,
or to reconstruct from each other, e.g. if the constructions
involved are based on genuinely complex mathematical con-
structions. This logical complexity of algorithms is orthogo-
nal to their computational complexity : an algorithm that is
easy to run may be hard to construct, even if the program
resulting from that construction is relatively succinct, like
e.g. [2]); whereas an algorithm that requires a small effort
to construct may, of course, require a great computational
effort when run.

The different roles of computational and of logical com-
plexities in security can perhaps be pondered on the follow-
ing example. In modern cryptography, a system C would be
considered very secure if an attack algorithm AC on it would
yield a proof that P = NP . But how would you feel about
a crypto system D such that an attack algorithm AD would
yield a proof that P 6= NP ? What is the difference between
the reductions

AC =⇒ P = NP and AD =⇒ P 6= NP ?

Most computer scientists believe that P 6= NP is true. If
P = NP is thus false, then no attack on C can exist, whereas
an attack on D may very well exist. On the other hand,
after many decades of efforts, the best minds of mankind
did not manage to construct a proof that P 6= NP . An
attacker on the system D, whose construction of AD would
provide us with a proof of P 6= NP , would be welcomed
with admiration and gratitude.

Since proving (or disproving) P 6= NP is worth a Clay
Institute Millenium Prize of $ 1,000,000, the system D seems
secure enough to protect a bank account with $ 900,000. If
an attacker takes your money from it, he will leave you with
a proof worth much more. So the logical complexity of the
system D seems to provide enough obscurity for a significant
amount of security!

But what is logical complexity? Computational com-
plexity of a program tells how many computational steps
(counting them in time, memory, state changes, etc.) does

5However, the International Obfuscated C Code Contest [21]
has generated some interesting and extremely amusing work.



the program take to transform its input into its output. Log-
ical complexity is not concerned with the execution of the
program, but with its logical construction. Intuitively, if
computational complexity of a program counts the number
of computational steps to execute it on an input of a given
length, its logical complexity should count the number of
computational steps that it takes to derive the program in a
desired format, from some form of specification. This oper-
ation may correspond to specification refinement and code
generation; or it may correspond to program transformation
into a desired format, if the specification is another program;
or it may be a derivation of an attack, if the specification is
the system.

Formally, this idea of logical complexity seems related to
the notion of logical depth, as developed in the realm of
algorithmic information theory [10, 26, 6]. In the usual for-
mulation, logical depth is viewed as a complexity measure
assigned to numbers. viewed as programs, or more precisely
as the Gödel-Kleene indices, which can be executed by a
universal Turing machine, and thus represent partial recu

p, viewed as the numbers code(p) which are executable
by a universal Turing machine. The logical depth of a pro-
gram p is defined to be the computational complexity of the
simplest program that outputs code(p). The task of logi-
cal complexity, as a measure of the difficulty of attacker’s
algorithmic tasks, is to lift this idea from the realm of ex-
ecutable encodings of programs, to their executable logical

specifications [19, 8], viewed as their ”explanations”. The
underlying idea is that for an attacker on a logically com-
plex secure system, it may not suffice to have executable
code of that system, and an opportunity to run it; in order
to construct an attack, the attacker needs to ”understand”
the system, and specify an ”explanation”. But what does it
mean to ”understand” the system? How can we recognize
an ”explanation” of a program? A possible interpretation
is that a specification explains a program if it allows pre-
dicting its outputs of the program without running it, and
it requires strictly less computation on the average6. Let us
try to formalize this idea.

Logical depth is formalized in terms of a universal Turing
machine U , which takes code(p) of a program p and for any
input x outputs

U
(

code(p), x
)

= p(x) (1)

To formalize logical complexity, we also need a code genera-
tor Γ, which for every program p with a logical specification
spec(p) generates

Γ
(

spec(p)
)

= code(p) (2)

so that U
(

Γ (spec(p)) , x
)

= p(x) holds for all inputs x again.
Composing the generator of the executable code with the
universal Turing machine yields a universal specification eval-
uator G, defined by

G(φ, x) = U
(

Γ(φ), x
)

(3)

This universal specification evaluator is analogous to the
universal Turing machine in that it satisfies the equation

G
(

spec(p), x
)

= p(x) (4)

6This requirement should be formalized to capture the idea
that the total cost of predicting all values of the program is
essentially lower than the total cost of evaluating the pro-
gram on all of its values.

analogous with (1), for all programs p and inputs x. So G
executes spec(p) just like the U executes code(p). Moreover,
we require that G is a homomorphism with respect to some
suitable operations, i.e. that it satisfies something like

G
(

spec(p)⊕ spec(q), x
)

= p(x) + q(x) (5)

where + is some operation on data, and ⊕ is a logical op-
eration on programs. In general, G may satisfy such re-
quirements with respect to several such operations, pos-
sibly of different arities. In this way, the structure of a
program specification on the left hand side will reflect the
structure of the program outputs on the right hand side.
If a complex program p has spec(p) satisfying (5), then we
can analyze and decompose spec(p) on the left hand side
of (5), learn a generic structure of its outputs on the right
hand side, and predict the behavior of p without running it,
provided that we know the behaviors of the basic program
components. The intended difference between the Gödel-
Kleene code(p) in (1), and the executable logical specifica-
tion spec(p) in (4) is that each code(p) must be evaluated
on each x to tell p(x), whereas spec(p) allows us to derive
p(x), e.g., from q(x) if spec(p) = Φspec(q) and x = φy for an
easy program transformation Φ and data operation φ satis-
fying G (Φ(spec(q)), y) = φ(q(y)). (See a further comment
in Sec. 5.)

The notion of logical complexity can thus be construed as
a strengthening of the notion of logical depth by the addi-
tional requirement that the execution engine G should pre-
serve some composition operations. I conjecture that a log-
ical specification framework for measuring logical complex-
ity of programs can be realized as a strengthened version of
the Gödel-Kleene-style program encodings, using the avail-
able program specification and composition tools and for-
malisms [9, 14, 34, 29, 33]. Logical complexity of a program
p could then be defined as the computational complexity of
the simplest executable logical specification φ that satisfies
G(φ, x) = p(x) for all inputs x.

One-way programmable security? If a proof of P 6=
NP is indeed hard to construct, as the years of efforts sug-
gest, then the program implementing an attack algorithm
AD as above, satisfying AD ⇒ P 6= NP , must be logically
complex. Although the system D may be vulnerable to a
computationally feasible attack AD, constructing this at-
tack may be computationally unfeasible. For instance, the
attacker might try to derive AD from the given program D.
Deriving a program from another program must be based on
”understanding”, and some sort of logical homomorphism,
mapping the meanings in a desired way. The attacker should
thus try to extract spec(D) from D and then to construct
spec(AD) from spec(D). However, if D is logically complex,
it may be hard to extract spec(D), and ”understand” D,
notwithstanding the fact that it may be perfectly feasible to
reverse engineer code(D) from D. In this sense, generating
a logically complex program may be a one-way operation,
with an unfeasible inverse. A simple algorithm AD, and with
it a simple proof of N 6= NP , may, of course, exist. But the
experience of looking for the latter suggests that the risk is
low. Modern cryptography is based on accepting such risks.

Approximate logical specifications. While the actual
technical work on the idea of logical complexity remains for
future work, it should be noted that the task of provid-
ing a realistic model of attacker’s logical practices will not
be accomplished realizing a universal execution engine G



satisfying the homomorphism requirements with respect to
some suitable logical operations. For a pragmatic attacker,
it does not seem rational to analyze a program p all the
way to spec(p) satisfying (4), when most of the algorithms
that he deals with are randomized. He will thus probably
be satisfied with specε(p) such that

Prob
(

G
(

specε(p), x
)

= p(x)
)

≥ ε (6)

4.3 Logical complexity of gaming security
Logical specifications as beliefs. Approximate logical
specifications bring us back to security as a game of incom-
plete information. In order to construct a strategy each
player in such a game must supplement the available infor-
mations about the opponent by some beliefs. Mathemat-
ically, these beliefs have been modeled, ever since [18], as
probability distributions over opponent’s payoff functions.
More generally, in games not driven by payoffs, beliefs can be
modeled as probability distributions over the possible oppo-
nent’s behaviors, or algorithms. In the framework described
above, such a belief can thus be viewed as an approximate
logical specification of opponent’s algorithms. An approxi-
mation specε(p) can thus be viewed not as a deterministic
specification probably close to p, but as a probability distri-
bution containing some information about p.

Since both players in a game of incomplete information
are building beliefs about each other, they must also build
beliefs about each other beliefs: A formulates a belief about
B’s belief about A, and B formulates a belief about A’s be-
lief about B. And so on to the infinity. This is described
in more detail in the Appendix, and in still more detail in
[4]. These hierarchies of beliefs are formalized as probability
distributions over probability distributions. In the frame-
work of logical complexity, the players thus specify approx-
imate specifications about each other’s approximate speci-
fications. Since these specifications are executable by the
universal evaluator G, they lead into an algorithmic theory
of incomplete information, since players’ belief hierarchies
are now computable, i.e. they consist of samplable probabil-
ity distributions. Approximate specifications, on the other
hand, introduce an interesting twist into algorithmic theory
of information: while code(code(p)) could not be essentially
simpler than code(p) (because them we could derive for p
simpler code than code(p)), specε(specε(p)) can be simpler
than specε(p).

5. FINAL COMMENTS
On games of security and obscurity. The first idea of
this paper is that security is a game of incomplete informa-
tion: by analyzing your enemy’s behaviors and algorithms
(subsumed under what game theorists call his type), and by
obscuring your own, you can improve the odds of winning
this game.

This claim contradicts Kerckhoffs’ Principle that there is
no security by obscurity, which implies that security should
be viewed as a game of imperfect information, by asserting
that security is based on players’ secret data (e.g. cards),
and not on their obscure behaviors and algorithms.

I described a toy model of a security game which illus-
trates that security is fundamentally based on gathering and
analyzing information about the type of the opponent. This
model thus suggests that security is not a game of imper-
fect information, but a game of incompete information. If

confirmed, this claim implies that security can be increased
not only by analyzing attacker’s type, but also by obscuring
defender’s type.

On logical complexity. The second idea of this paper
is the idea of one way programming, based on the concept
of logical complexity of programs. The devil of the logical
complexity proposal lies in the ”detail” of stipulating the
logical operations that need to be preserved by the univer-
sal specification evaluator G. These operations determine
what does it mean to specify, to understand, to explain an
algorithm. One stipulation may satisfy some people, a dif-
ferent one others. A family of specifications structured for
one G may be more suitable for one type of logical transfor-
mations and attack derivations, another family for another
one. But even if we give up the effort to tease out logical
structure of algorithms through the homomorphism require-
ment, and revert from logical complexity to logical depth,
from homomorphic evaluators G, to universal Turing ma-
chines U , and from spec(p) to code(p), even the existing
techniques of algorithmic information theory alone may suf-
fice to develop one-way programs, easy to construct, but
hard to deconstruct and transform. A system programmed
in that way could still allow computationally feasible, but
logically unfeasible attacks.

On security of profiling. Typing and profiling are frowned
on in security. Leaving aside the question whether gathering
information about the attacker, and obscuring the system,
might be useful for security or not, these practices remain
questionable socially. The false positives arising from such
methods cause a lot of trouble, and tend to just drive the
attackers deeper into hiding.

On the other hand, typing and profiling are technically
and conceptually unavoidable in gaming, and remain re-
spectable research topics of game theory. Some games can-
not be played without typing and profiling the opponents.
Poker and the bidding phase of bridge are all about trying
to guess your opponents’ secrets by analyzing their behav-
iors. Players do all they can to avoid being analyzed, and
many prod their opponents to sample their behaviors. Some
games cannot be won by mere uniform distributions, with-
out analyzing opponents’ biases.

Both game theory and immune system teach us that we
cannot avoid profiling the enemy. But both the social ex-
perience and immune system teach us that we must set the
thresholds high to avoid the false positives that the profil-
ing methods are so prone to. Misidentifying the enemy leads
to auto-immune disorders, which can be equally pernicious
socially, as they are to our health.
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APPENDIX

A. GAMING SECURITY FORMALISM
Can the idea of applied security by obscurity be realized?

To test it, let us first make it more precise in a mathematical
model. I first present a very abstract model of strategic be-
havior, capturing and distinguishing the various families of
games studied in game theory, and some families not stud-
ied. The model is based on coalgebraic methods, along the
lines of [31]. I will try to keep the technicalities at a min-
imum, and the reader is not expected to know what is a
coalgebra.

A.1 Arenas

Definition 1. A player is a pair of sets A = 〈MA, SA〉,
where the elements of MA represent or moves available to
A, and the elements of SA are the states that Amay observe.

A simple response Σ : A → B for a player B to a player
A is a binary relation

Σ : MA × S2
B ×MB → {0, 1}

When Σ(a, β, β′, b) = 1, we write 〈a, β〉
Σ
−→ 〈β′, b〉, and say

that the strategy Σ at B’s state β prescribes that B should
respond to A’s move a by the move b and update his state to
β′. The set of B’s simple responses to A is written SR(A,B).

A mixed response Φ : A → B for the player B to the
player A is a matrix

Φ : MA × S2
B ×MB → [0, 1]

required to be finitely supported and stochastic in MA, i.e.
for every a ∈ MA holds

• Φaββ′b = 0 holds for all but finitely many β, β′ and b,

•
∑

ββ′b Φaββ′b = 1.

When Φaββ′b = p we write 〈a, β〉
Φ
−→
p

〈β′, b〉, and say that

the strategy Φ at B’s state β responds to A’s move a with
a probability p by B’s move b leading him into the state β′.
The set of B’s mixed responses to A is written MR(A,B).

An arena is a specification of a set of players and a set of
responses between them.

Responses compose. Given simple responses Σ : A → B
and Γ : B → C, we can derive a response (Σ; Γ) : A → C for
the player C against A by taking the player B as a ”man in
the middle”. The derived response is constructed as follows:

〈a, β〉
Σ
−→ 〈β′, b〉 〈b, γ〉

Γ
−→ 〈γ′, c〉

〈a, γ〉
(Σ;Γ)
−−−→ 〈γ′, c〉

Following the same idea, for the mixed responses Φ : A → B
and Ψ : B → C we have the composite (Φ;Ψ) : A → C with
the entries

(Φ;Ψ)aγγ′c =
∑

ββ′b

Φaββ′b ·Ψbγγ′c

It is easy to see that these composition operations are asso-
ciative and unitary, both for the simple and for the mixed
responses.

A.2 Games
Arenas turn out to provide a convenient framework for a

unified presentation of games studied in game theory [40,
30], mathematical games [7], game semantics [1, 20], and
some constructions in-between these areas [13]. Here we
shall use them to succinctly distinguish between the various
kinds of game with respect to the information available to
the players. As mentioned before, game theorists usually
distinguish two kinds of players’ information:

• data, or positions: e.g., a hand of cards, or a secret
number; and

• types, or preferences: e.g., player’s payoff matrix, or a
system that he uses are components of his type.

The games in which the players have private data or posi-
tions are the games of imperfect information. The games
where the players have private types or preferences, e.g. be-
cause they don’t know each other’s payoff matrices, are the
games of incomplete information. See [4] for more about
these ideas, [30] for the technical details of the perfect-
imperfect distinction, and [17] for the technical details of
the complete-incomplete distinction.

But let us see how arenas capture these distinction, and
what does all that have to do with security.

A.2.1 Games of perfect and complete information
In games of perfect and complete information, each player

has all information about the other player’s data and pref-
erences, i.e. payoffs. To present the usual stateless games in
normal form, we consider the players A and B whose state
spaces are the sets payoff bimatrices, i.e.

SA = SB = (R× R)MA×MB

In other words, a state σ ∈ SA = SB is a pair of maps
σ = 〈σA, σB〉 where σA is the MA ×MB-matrix of A’s pay-
offs: the entry σA

ab is A’s payoff if A plays a and B plays
b. Ditto for σB . Each game in the standard bimatrix form
corresponds to one element of both state spaces SA = SB.
It is nominally represented as a state, but this state does not
change. The main point here is that both A and B know
this element. This allows both of them to determine the
best response strategies ΣA : B → A for A and ΣB : A → B
for B, in the form

〈b, σA〉
ΣA−−→ 〈σA, a〉 ⇐⇒ ∀x ∈ MA. σ

A
xb ≤ σA

ab

〈a, σB〉
ΣB−−→ 〈σB, b〉 ⇐⇒ ∀y ∈ MB. σ

B
ay ≤ σB

ab

and to compute the Nash equilibria as the fixed points of
the composites (ΣB ; ΣA) : A → A and (ΣA; ΣB) : B →
B. This is further discussed in [31]. Although the payoff
matrices in games studied in game theory usually do not
change, so the corresponding responses fix all states, and
each response actually presents a method to respond in a



whole family of games, represented by the whole space of
payoff matrices, it is interesting to consider, e.g. discounted
payoffs in some iterated games, where the full force of the
response formalism over the above state spaces is used.

A.2.2 Games of imperfect information
Games of imperfect information are usually viewed in ex-

tended form, i.e. with nontrivial state changes, because
players’ private data can then be presented as their private
states. Each player now has a set if private positions, PA

and PB , which is not visible to the opponent. On the other
hand, both player’s types, presented as their payoff matrices,
are still visible to both. So we have

SA = PA × (R× R)MA×MB

SB = PB × (R× R)MA×MB

E.g., in a game of cards, A’s hand will be an element of PA,
B’s hand will be an element of PB . With each response, each
player updates his position, whereas their payoff matrices
usually do not change.

A.2.3 Games of incomplete information
Games of incomplete information are studied in epistemic

game theory [18, 27, 4], which is formalized through knowl-
edge and belief logics. The reason is that each player here
only knows with certainty his own preferences, as expressed
by his payoff matrix. The opponent’s preferences and payoffs
are kept in obscurity. In order to anticipate opponent’s be-
haviors, each player must build some beliefs about the other
player’s preferences. In the first instance, this is expressed
as a probability distribution over the other player’s possi-
ble payoff matrices. However, the other player also builds
beliefs about his opponent’s preferences, and his behavior
is therefore not entirely determined by his own preferences,
but also by his beliefs about his opponent’s preferences. So
each player also builds some beliefs about the other player’s
beliefs, which is expressed as a probability distribution over
the probability distributions over the payoff matrices. And
so to the infinity. Harsanyi formalized the notion of players
type as an element of such information space, which includes
each player’s payoffs, his beliefs about the other player’s pay-
offs, his beliefs about the other player’s beliefs, and so on
[18]. Harsanyi’s form of games of incomplete information
can be presented in the arena framework by taking

SA = R
MA×MB +∆SB

SB = R
MA×MB +∆SA

where + denotes the disjoint union of sets, and ∆X es the
space of finitely supported probability distributions over X,
which consists of the maps p : X → [0, 1] such that

|{x ∈ X|p(x) > 0}| < ∞ and
∑

x∈X

p(x) = 1

Resolving the above inductive definitions of SA and SB , we
get

SA = SB =
∞
∏

i=0

∆i
(

R
MA×MB

)

Here the state σA ∈ SA is thus a sequence

σA = 〈σA
0 , σA

1 , σA
2 , . . .〉

where σA
i ∈ ∆i

R
MA×MB . The even components σA

2i repre-
sent A’s payoff matrix, A’s belief about B’s belief about A’s
payoff matrix, A’s belief about B’s belief about A’s belief
about B’s belief about A’s payoff matrix, and so on. The
odd components σ2i+1

A represent A’s belief about B’s payoff
matrix, A’s belief about B’s belief about A’s belief about B’s
payoff matrix, and so on. The meanings of the components
of the state σB ∈ SB are analogous.

A.3 Security games
We model security processes as a special family of games.

It will be a game of imperfect information, since the players
of security games usually have some secret keys, which are
presented as the elements of their private state sets PA and
PD. The player A is now the attacker, and the player D is
the defender.

The goal of a security game is not expressed through pay-
offs, but through ”security requirements” Θ ⊆ PD. The
intuition is that the defender D is given a family of assets to
protect, and the Θ are the desired states, where these assets
are protected. The defender’s goal is to keep the state of the
game in Θ, whereas the attacker’s goal is to drive the game
outside Θ. The attacker may have additional preferences,
expressed by a probability distribution over his own private
states PA. We shall ignore this aspect, since it plays no role
in the argument here; but it can easily be captured in the
arena formalism.

Since players’ goals are not to maximize their revenues,
their behaviors are not determined by payoff matrices, but
by their response strategies, which we collect in the sets
RA(A,D) and RA(D,A). In the simplest case, response
strategies boil down to the response maps, and we take
RA(A,D) = SR(A,D), or RA(A,D) = MR(A,D). In gen-
eral, though, A’s and D’s behavior may not be purely ex-
tensional, and the elements of RA(A,D) may be actual al-
gorithms.

While both players surely keep their keys secret, and some
part of the spaces PA and PD are private, they may not know
each other’s preferences, and may not be given each other’s
”response algorithms”. If they do know them, then both
defender’s defenses and attaker’s attacks are achieved with-
out obscurity. However, modern security definitions usually
require that the defender defends the system against a fam-
ily of attacks without querying the attacker about his algo-
rithms. So at least the theoretical attacks are in principle

afforded the cloak of obscurity. Since the defender D thus
does not know the attacker A’s algorithms, we model se-
curity games as games of incomplete information, replacing
the player’s spaces of payoff matrices by the spaces RA(A,D)
and RA(D,A) of their response strategies to one another.

Like above, A thus only knows PA and RA(D,A) with cer-
tainty, and D only knows PD and RA(A,D) with certainty.
Moreover, A builds his beliefs about D’s data and type, as a
probability distribution over PD × RA(A,D), and D builds
similar beliefs about A. Since they then also have to build
beliefs about each other’s beliefs, we have a mutually recur-
rent definition of the state spaces again:

SA =
(

PA × RA(D,A)
)

+∆SD

SD =
(

PD × RA(A,D)
)

+∆SA



Resolving the induction again, we now get

SA =

∞
∏

i=0

∆2i
(

PA × RA(D,A)
)

×∆2i+1
(

PD × RA(A,D)
)

SD =
∞
∏

i=0

∆2i(PD × RA(A,D)
)

×∆2i+1(PA × RA(D,A)
)

Defender’s state β ∈ SD is thus a sequence β = 〈β0, β1, β2, . . .〉,
where

• β0 = 〈βP
0 , βRA

0 〉 ∈ PD × RA(A,D) consists of

– D’s secrets βP
0 ∈ PD, and

– D’s current response strategy βRA

0 ∈ RA(A,D)

• β1 ∈ ∆
(

PA ×RA(D,A)
)

is D’s belief about A’s secrets
and her response strategy;

• β2 ∈ ∆2
(

PD ×RA(A,D)
)

is D’s belief about A’s belief
about D’s secrets and his response strategy;

• β3 ∈ ∆3
(

PA × RA(D,A)
)

is D’s belief about A’s belief
about D’s beliefs, etc.

Each response strategy Σ : A → D prescribes the way in
which D should update his state in response to A’s observed
moves. E.g., if RA(D,A) is taken to consist of relations in
the form Λ : M+

D ×MA → {0, 1}, where M+
D is the set of

nonempty strings in MD, then D can record the longer and
longer histories of A’s responses to his moves.

Remark. The fact that, in a security game, A’s state space
SA contains RA(D,A) and RA(A,D) means that each player
A is prepared for playing against a particular playerD; while
D is prepared for playing against A. This reflects the sit-
uation in which all security measures are introduced with
particular attackers in mind, whereas the attacks are built
to attack particular security measures. A technical conse-
quence is that players’ state spaces are defined by the in-
ductive clauses, which often lead to complex impredicative
structures. This should not be surprising, since even infor-
mal security considerations often give rise to complex belief
hierarchies, and the formal constructions of epistemic game
theory [18, 27, 16] seem like a natural tool to apply.

A.4 The game of attack vectors
We specify a formal model of the game of attack vec-

tors as a game of perfect but incomplete information. This
means that the players know each other’s positions, but need
to learn about each other’s type, i.e. plans and methods.
The assumption that the players know each other’s posi-
tion could be removed, without changing the outcomes and
strategies, by refining the way the model of players’ obser-
vations. But this seems inessential, and we omit it for sim-
plicity.

Let O denote the unit disk in the real plane. If we assume
that it is parametrized in the polar coordinates, then O =
{0} ∪ (0, 1] × R/2πZ, where R/2πZ denotes the circle. Let
R ⊆ R

2 be an open domain in the real plane. Players’
positions can then be defined as continuous mappings of O
into R, i.e.

PA = PD = RO

The rules of the game will be such that the attacker’s and
the defender’s positions pA, pD ∈ RO always satisfy the con-
straint that

poA ∩ poD = ∅

where po denotes the interior of the image of p : O → R.
The assumption that both players know both their own and
the opponent’s positions means that both state spaces SA

and SD will contain PA × PD as a component. The state
spaces are thus

SA = (PA × PD × RA(D,A)) +∆SD

SD = (PA × PD × RA(A,D)) +∆SD

To start off the game, we assume that the defender D is
given some assets to secure, presented as an area Θ ⊆ R.
The defender wins as long as his position pD ∈ PD is such
that Θ ⊆ poD. Otherwise the defender loses. The attacker’s
goal is to acquire the assets, i.e. to maximize the area Θ∩poA.

The players are given equal forces to distribute along the
borders of their respective territories. Their moves are the
choices of these distributions, i.e.

MA = MD = ∆(∂O)

where ∂O is the unit circle, viewed as the boundary of O,
and ∆(∂O) denotes the distributions along ∂O, i.e. the
measurable functions m : ∂O → [0, 1] such that

∫

∂O
m = 1.

How will D update his space after a move? This can be
specified as a simple response Σ : A → D. Since the point
of this game is to illustrate the need for learning about the
opponent, let us leave out players’ type information for the
moment, and assume that the players only look at their
positions, i.e. SA = SD = PA × PD. To specify Σ : A → B,
we must thus determine the relation

〈mA, pA, pD〉
Σ
−→ 〈p′A, p

′
D,mD〉

for any given mA ∈ MA, pA ∈ PA, and pD ∈ PD. We
describe the updates p′A and p′D for an arbitrary mD, and
leave it to D to determine which mDs are the best responses
for him. So given the previous positions and both player’s
moves, the new position p′A will map a point on the bound-
ary of the circle, viewed as a unit vector ~x ∈ O into the
vector ~p ′

A(~x) in R ⊆ R
2 as follows.

• If for all ~y ∈ O and for all s ∈ [0,mA(~x)] and all t ∈
[0,mD(~y)] holds (1 + s)~pA(~x) 6= (1 + t)~pD(~y) then set

~p ′
A(~x) =

1 +mA(~x)

2
· ~pA(~x)

• Otherwise, let ~y ∈ O, s ∈ [0, mA(~x)] and t ∈ [0, mD(~y)]
be the smallest numbers such that (1+ s)~pA(~x) = (1+
t)~pD(~y). Writing m′

A(~x) = mA(~x) − s and m′
D(~y) =

mD(~y)− t, we set

~p ′
A(~x) =

1 +m′
A(~x)

2
· ~pA(~x) +

1 +m′
D(~y)

2
· ~pD(~y)

This means that the player A will push her boundary by
mA(~x) in the direction ~pA(~x) if she does not encounter D
at any point during that push. If somewhere during that
push she does encounter D’s territory, then they will push
against each other, i.e. their push vectors will compose.
More precisely, A will push in the direction ~pA(~x) with the
force m′

A(~x) = mA(~x) − s, that remains to her after the
initial free push by s; but moreover, her boundary will also
be pushed in the direction ~pD(~y) by the boundary of D’s
territory, with the force m′

D(~y) = mD(~y) − t, that remains
to D after his initial free push by t. Since D’s update is
defined analogously, a common boundary point will arise,
i.e. players’ borders will remain adjacent. When the move



next, there will be no free initial pushes, i.e. s and t will be
0, and the update vectors will compose in full force.

How do the players compute the best moves? Attacker’s
goal is, of course, to form a common boundary and to push
towards Θ, preferably from the direction where the defender
does not defend. The defender’s goal is to push back. As
explained explained in the text, the game is thus resolved on
defender’s capability to predict attacker’s moves. Since the
territories do not intersect, butA’s moves become observable
for D along the part of the boundary of A’s territory that
lies within the convex hull of D’s territory, D’s moves must
be selected to maximize the length of the curve

∂pA ∩ conv(pD)

This strategic goal leads to the evolution described infor-
mally in Sec. 3.2.
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